diff --git a/modules/deeplearning/cloud_fraction_fcn_abi.py b/modules/deeplearning/cloud_fraction_fcn_abi.py index dabad740509730210402ee04cf4b099021cc57b8..241fa61d01348ea5647ca8d07da005866e4bbe44 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi.py @@ -777,6 +777,7 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): h5f = h5py.File(in_file, 'r') bt = get_grid_values_all(h5f, 'temp_11_0um_nom') + y_len, x_len = bt.shape refl = get_grid_values_all(h5f, 'refl_0_65um_nom') refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub') refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub') @@ -785,43 +786,35 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): lons = get_grid_values_all(h5f, 'longitude') lats = get_grid_values_all(h5f, 'latitude') - # bt = bt[0:2500, :] - # refl = refl[0:2500, :] - # lons = lons[0:2500, :] - # lats = lats[0:2500, :] - # refl_lo = refl_lo[0:2500, :] - # refl_hi = refl_hi[0:2500, :] - # refl_std = refl_std[0:2500, :] - # cp = cp[0:2500, :] + bt_nh = bt[0:2501, :] + refl_nh = refl[0:2501, :] + refl_lo_nh = refl_lo[0:2501, :] + refl_hi_nh = refl_hi[0:2501, :] + refl_std_nh = refl_std[0:2501, :] + cp_nh = cp[0:2501, :] - y_len, x_len = bt.shape[0], bt.shape[1] - - bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct) - refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct) - refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct) - refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct) - refl_std = np.where(np.isnan(refl_std), 0, refl_std) - cp = np.where(np.isnan(cp), 0, cp) - - data = np.stack([bt, refl, refl_lo, refl_hi, refl_std, cp], axis=2) - data = np.expand_dims(data, axis=0) + bt_sh = bt[2499:y_len, :] + refl_sh = refl[2499:y_len, :] + refl_lo_sh = refl_lo[2499:y_len, :] + refl_hi_sh = refl_hi[2499:y_len, :] + refl_std_sh = refl_std[2499:y_len, :] + cp_sh = cp[2499:y_len, :] h5f.close() - nn = SRCNN() - probs = nn.run_evaluate(data, ckpt_dir) - cld_frac = probs.argmax(axis=3) - cld_frac = cld_frac.astype(np.int8) + cld_frac_nh = run_evaluate_static_(bt_nh, refl_nh, refl_lo_nh, refl_hi_nh, refl_std_nh, cp_nh, ckpt_dir) + cld_frac_sh = run_evaluate_static_(bt_sh, refl_sh, refl_lo_sh, refl_hi_sh, refl_std_sh, cp_sh, ckpt_dir) + cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8) border = int((KERNEL_SIZE - 1)/2) - cld_frac_out[border:y_len - border, border:x_len - border] = cld_frac[0, :, :] + cld_frac_out[border:2500, border:x_len - border] = cld_frac_nh[0, :, :] + cld_frac_out[2500:y_len - border, border:x_len - border] = cld_frac_sh[0, :, :] bt = denormalize(bt, 'temp_11_0um_nom', mean_std_dct) refl = denormalize(refl, 'refl_0_65um_nom', mean_std_dct) var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um'] dims = ['num_params', 'y', 'x'] - da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims) da.assign_coords({ 'num_params': var_names, @@ -835,6 +828,24 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): return [cld_frac_out, bt, refl, cp, lons, lats] +def run_evaluate_static_(bt, refl, refl_lo, refl_hi, refl_std, cp, ckpt_dir): + bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct) + refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct) + refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct) + refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct) + refl_std = np.where(np.isnan(refl_std), 0, refl_std) + cp = np.where(np.isnan(cp), 0, cp) + + data = np.stack([bt, refl, refl_lo, refl_hi, refl_std, cp], axis=2) + data = np.expand_dims(data, axis=0) + nn = SRCNN() + probs = nn.run_evaluate(data, ckpt_dir) + cld_frac = probs.argmax(axis=3) + cld_frac = cld_frac.astype(np.int8) + + return cld_frac + + def analyze_3cat(file): tup = np.load(file, allow_pickle=True)