diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py index b99843c65a4d280d31c85f81ae24ef8163ce6ce0..40a79ee04f43d00fe6ddbb50ab0681352ec0f9b0 100644 --- a/modules/deeplearning/espcn.py +++ b/modules/deeplearning/espcn.py @@ -172,7 +172,7 @@ class ESPCN: self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) - # self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans)) + self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans)) self.inputs.append(self.X_img) @@ -196,6 +196,7 @@ class ESPCN: # label = label[:, label_idx, :, :] label = label[:, label_idx, 3:67, 3:67] label = np.expand_dims(label, axis=3) + label = tf.image.resize(label, (32, 32)) # data = data[:, data_idx, :, :] data = data[:, data_idx, 3:67, 3:67] @@ -366,8 +367,8 @@ class ESPCN: # conv = tf.keras.layers.Conv2D((factor ** 2), 3, padding='same')(conv) print(conv.shape) - conv = tf.nn.depth_to_space(conv, factor) - print(conv.shape) + # conv = tf.nn.depth_to_space(conv, factor) + # print(conv.shape) self.logits = tf.keras.layers.Conv2D(1, kernel_size=3, strides=1, padding=padding, name='regression')(conv)