diff --git a/modules/util/viirs_surfrad.py b/modules/util/viirs_surfrad.py
index f80d3910f8136df4ccefceda01590a9e17e16e24..54902c7274a0683ed3ec102e8650b14bbd380083 100644
--- a/modules/util/viirs_surfrad.py
+++ b/modules/util/viirs_surfrad.py
@@ -78,7 +78,6 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st
 
     num_files = len(data_files)
     print('Start, number of files: ', num_files)
-    kept_cnt = 0
 
     for idx, data_f in enumerate(data_files):
         # if idx % 4 == 0:  # if we want to skip some files
@@ -90,49 +89,51 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st
                 continue
 
             try:
-                total, kept = run(h5f, data_params, data_train_tiles, data_valid_tiles,
-                                  label_params, label_train_tiles, label_valid_tiles,
-                                  num_keep_x_tiles=num_keep_x_tiles, tile_width=64, kernel_size=5, day_night=day_night)
+                run(h5f, data_params, data_train_tiles, data_valid_tiles,
+                    label_params, label_train_tiles, label_valid_tiles,
+                    num_keep_x_tiles=num_keep_x_tiles, tile_width=64, kernel_size=5, day_night=day_night)
             except Exception as e:
                 print(e)
                 h5f.close()
                 continue
-            kept_cnt += kept
-            print(data_f, kept_cnt, int(100 * (kept/total)))
+            print(data_f)
             f_cnt += 1
             h5f.close()
 
-            if len(data_train_tiles) == 0:
+            if len(data_train_tiles) == 0 and len(data_valid_tiles) == 0:
                 continue
 
-    #         if (f_cnt % 5) == 0:
-    #             num_valid_samples = 0
-    #             if len(data_valid_tiles) > 0:
-    #                 label_valid = np.stack(label_valid_tiles)
-    #                 data_valid = np.stack(data_valid_tiles)
-    #                 np.save(out_directory + 'data_valid_' + str(cnt), data_valid)
-    #                 np.save(out_directory + 'label_valid_' + str(cnt), label_valid)
-    #                 num_valid_samples = data_valid.shape[0]
-    #
-    #             label_train = np.stack(label_train_tiles)
-    #             data_train = np.stack(data_train_tiles)
-    #             np.save(out_directory + 'label_train_' + str(cnt), label_train)
-    #             np.save(out_directory + 'data_train_' + str(cnt), data_train)
-    #             num_train_samples = data_train.shape[0]
-    #
-    #             label_valid_tiles = []
-    #             label_train_tiles = []
-    #             data_valid_tiles = []
-    #             data_train_tiles = []
-    #
-    #             print('  num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples, int((f_cnt/num_files)*100))
-    #             total_num_train_samples += num_train_samples
-    #             total_num_valid_samples += num_valid_samples
-    #             print('total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples)
-    #
-    #             cnt += 1
-    #
-    # print('** total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples)
+            if (f_cnt % 5) == 0:
+                num_valid_samples = 0
+                if len(data_valid_tiles) > 0:
+                    label_valid = np.stack(label_valid_tiles)
+                    data_valid = np.stack(data_valid_tiles)
+                    #np.save(out_directory + 'data_valid_' + str(cnt), data_valid)
+                    #np.save(out_directory + 'label_valid_' + str(cnt), label_valid)
+                    num_valid_samples = data_valid.shape[0]
+
+                num_train_samples = 0
+                if len(data_train_tiles) > 0:
+                    label_train = np.stack(label_train_tiles)
+                    data_train = np.stack(data_train_tiles)
+                    #np.save(out_directory + 'label_train_' + str(cnt), label_train)
+                    #np.save(out_directory + 'data_train_' + str(cnt), data_train)
+                    num_train_samples = data_train.shape[0]
+
+                label_valid_tiles = []
+                label_train_tiles = []
+                data_valid_tiles = []
+                data_train_tiles = []
+
+                print('  num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples, int((f_cnt/num_files)*100))
+                total_num_train_samples += num_train_samples
+                total_num_valid_samples += num_valid_samples
+                print('total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples)
+                print('--------------------------------------------------')
+
+                cnt += 1
+
+    print('** total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples)
 
 
 #  tile_width: Must be even!
@@ -182,8 +183,6 @@ def run(h5f, param_s, train_tiles, valid_tiles, lbl_param_s, lbl_train_tiles, lb
     num_y_valid = int(num_keep_y_tiles * 0.1) + 1
     num_y_train = num_keep_y_tiles - num_y_valid - 1
 
-    cnt_total = 0
-    cnt_kept = 0
     for j in range(num_y_train):
         j_a = j_start + j * j_skip
         j_b = j_a + tile_width
@@ -192,8 +191,6 @@ def run(h5f, param_s, train_tiles, valid_tiles, lbl_param_s, lbl_train_tiles, lb
             i_a = i_start + i * i_skip
             i_b = i_a + tile_width
 
-            cnt_total += 1
-
             if day_night == 'DAY' and not is_day(solzen[j_a:j_b, i_a:i_b]):
                 continue
             elif day_night == 'NIGHT' and is_day(solzen[j_a:j_b, i_a:i_b]):
@@ -210,7 +207,6 @@ def run(h5f, param_s, train_tiles, valid_tiles, lbl_param_s, lbl_train_tiles, lb
             if nda_lbl is not None:
                 train_tiles.append(nda)
                 lbl_train_tiles.append(nda_lbl)
-                cnt_kept += 1
 
     j_start = num_y_train * tile_width + 2*tile_width
     for j in range(num_y_valid):
@@ -221,8 +217,6 @@ def run(h5f, param_s, train_tiles, valid_tiles, lbl_param_s, lbl_train_tiles, lb
             i_a = i_start + i * i_skip
             i_b = i_a + tile_width
 
-            cnt_total += 1
-
             if day_night == 'DAY' and not is_day(solzen[j_a:j_b, i_a:i_b]):
                 continue
             elif day_night == 'NIGHT' and is_day(solzen[j_a:j_b, i_a:i_b]):
@@ -239,9 +233,6 @@ def run(h5f, param_s, train_tiles, valid_tiles, lbl_param_s, lbl_train_tiles, lb
             if nda_lbl is not None:
                 valid_tiles.append(nda)
                 lbl_valid_tiles.append(nda_lbl)
-                cnt_kept += 1
-
-    return cnt_total, cnt_kept
 
 
 # def run_mean_std(directory):