diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index 33022629f26a250f7a213f1408b665fd026f142e..6b09eaf7c64811bc3327c7a1fb888fddca898fe6 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -1,3 +1,4 @@ +import gc import glob import tensorflow as tf @@ -687,6 +688,95 @@ class SRCNN: self.build_evaluation() return self.do_evaluate(data, ckpt_dir) + def setup_inference(self, ckpt_dir): + self.num_data_samples = 80000 + self.build_model() + self.build_training() + self.build_evaluation() + + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + ckpt.restore(ckpt_manager.latest_checkpoint) + + def do_inference(self, inputs): + self.reset_test_metrics() + + pred = self.model([inputs], training=False) + self.test_probs = pred + pred = pred.numpy() + + return pred + + def run_inference(self, in_file, out_file): + gc.collect() + + h5f = h5py.File(in_file, 'r') + + refl = get_grid_values_all(h5f, 'refl_0_65um_nom') + LEN_Y, LEN_X = refl.shape + print(LEN_Y, LEN_X) + + bt = get_grid_values_all(h5f, 'temp_11_0um_nom') + + cld_opd = get_grid_values_all(h5f, 'cld_opd_dcomp_1') + + refl_sub_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub') + refl_sub_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub') + refl_sub_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub') + + self.run_inference_(bt, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd, LEN_Y, LEN_X) + + def run_inference_(self, bt, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd, LEN_Y, LEN_X): + + slc_x = slice(0, (LEN_X - 16) + 4) + slc_y = slice(0, (LEN_Y - 16) + 4) + x_2 = np.arange((LEN_X - 16) + 4) + y_2 = np.arange((LEN_Y - 16) + 4) + t = np.arange(0, (LEN_X - 16) + 4, 0.5) + s = np.arange(0, (LEN_Y - 16) + 4, 0.5) + + # refl = np.where(np.isnan(refl), 0, bt) + # refl = refl[slc_y, slc_x] + # refl = np.expand_dims(refl, axis=0) + # refl_us = upsample_static(refl, x_2, y_2, t, s, None, None) + # print(refl_us.shape) + # refl_us = normalize(refl_us, 'refl_0_65um_nom', mean_std_dct) + # print('REFL done') + + bt = np.where(np.isnan(bt), 0, bt) + bt = bt[slc_y, slc_x] + bt = np.expand_dims(bt, axis=0) + bt_us = upsample_static(bt, x_2, y_2, t, s, None, None) + bt_us = normalize(bt_us, 'temp_11_0um_nom', mean_std_dct) + print('BT done') + + refl_sub_lo = refl_sub_lo[slc_y, slc_x] + refl_sub_lo = np.expand_dims(refl_sub_lo, axis=0) + refl_sub_lo = upsample_nearest(refl_sub_lo) + refl_sub_lo = normalize(refl_sub_lo, 'refl_0_65um_nom', mean_std_dct) + + refl_sub_hi = refl_sub_hi[slc_y, slc_x] + refl_sub_hi = np.expand_dims(refl_sub_hi, axis=0) + refl_sub_hi = upsample_nearest(refl_sub_hi) + refl_sub_hi = normalize(refl_sub_hi, 'refl_0_65um_nom', mean_std_dct) + + refl_sub_std = refl_sub_std[slc_y, slc_x] + refl_sub_std = np.expand_dims(refl_sub_std, axis=0) + refl_sub_std = upsample_nearest(refl_sub_std) + + cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd) + cld_opd = cld_opd[slc_y, slc_x] + cld_opd = np.expand_dims(cld_opd, axis=0) + cld_opd_us = upsample_static(cld_opd, x_2, y_2, t, s, None, None) + cld_opd_us = normalize(cld_opd_us, label_param, mean_std_dct) + print('OPD done') + + data = np.stack([bt_us, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd_us], axis=3) + + # data = self.do_inference(data) + + return None + def run_restore_static(directory, ckpt_dir, out_file=None): nn = SRCNN()