diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py index 6ddb3f14d8b04f9980751a5bbad5d2a1b25299c0..d189b523ffc337a6856032abfa7aafefaecfd5e3 100644 --- a/modules/deeplearning/espcn.py +++ b/modules/deeplearning/espcn.py @@ -397,7 +397,7 @@ class ESPCN: if do_batch_norm: conv = tf.keras.layers.BatchNormalization()(conv) - conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv) print(conv.shape) if do_drop_out: @@ -430,20 +430,21 @@ class ESPCN: if do_batch_norm: conv = tf.keras.layers.BatchNormalization()(conv) - conv = tf.keras.layers.Conv2D(num_filters // 2, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) - print(conv.shape) - - # conv = tf.keras.layers.Conv2D(4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) + # conv = tf.keras.layers.Conv2D(num_filters // 2, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) # print(conv.shape) - conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=3, strides=2, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.Conv2D(4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) print(conv.shape) - conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) + # conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=3, strides=2, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.Conv2DTranspose(1, kernel_size=3, strides=2, padding=padding, activation=activation)(conv) print(conv.shape) - conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) - print(conv.shape) + # conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) + # print(conv.shape) + # + # conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) + # print(conv.shape) #self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=tf.nn.sigmoid)(conv) self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability')(conv)