diff --git a/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py b/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py index 65fcd44bc55830ef92dc85da22a0673207a4a65c..21ecd0916110891cdcd298f7c15646fd9f927340 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py @@ -519,6 +519,7 @@ class SRCNN: momentum = 0.99 num_filters = 64 + num_filters_hkm = 8 input_2d = self.inputs[0] input_hkm_2d = self.inputs[1] @@ -530,12 +531,11 @@ class SRCNN: conv_hkm = conv_hkm_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_hkm_2d) print(conv_hkm.shape) - num_filters_hkm = 8 conv_hkm = build_conv2d_block(conv_hkm, num_filters_hkm, activation, 'Conv2D_1') num_filters_hkm *= 2 conv_hkm = build_conv2d_block(conv_hkm, num_filters_hkm, activation, 'Conv2D_2') - conv_b = conv_b + conv_hkm + conv_b = tf.keras.layers.concatenate([conv_b, conv_hkm]) print(conv_b.shape) # if NOISE_TRAINING: @@ -549,7 +549,7 @@ class SRCNN: conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) - conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) + #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale)