From 8a24d891cc4cd063c2db7b841cbe5ed36dc63d78 Mon Sep 17 00:00:00 2001
From: tomrink <rink@ssec.wisc.edu>
Date: Mon, 28 Nov 2022 15:25:32 -0600
Subject: [PATCH] snapshot...

---
 modules/deeplearning/srcnn_l1b_l2.py | 52 +++++++++++++++++++++++++---
 1 file changed, 48 insertions(+), 4 deletions(-)

diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py
index 2973c69c..4c730626 100644
--- a/modules/deeplearning/srcnn_l1b_l2.py
+++ b/modules/deeplearning/srcnn_l1b_l2.py
@@ -713,6 +713,50 @@ def run_restore_static(directory, ckpt_dir):
     nn.run_restore(directory, ckpt_dir)
 
 
+# def run_evaluate_static(in_file, out_file, ckpt_dir):
+#     N = 8
+#     sub_y, sub_x = (N+1) * 128, (N+1) * 128
+#     y_0, x_0, = 2500 - int(sub_y/2), 2500 - int(sub_x/2)
+#
+#     slc_y_2, slc_x_2 = slice(1, 128*N + 6, 2), slice(1, 128*N + 6, 2)
+#     y_2, x_2 = np.arange((128*N)/2 + 3), np.arange((128*N)/2 + 3)
+#     t, s = np.arange(1, (128*N)/2 + 2, 0.5), np.arange(1, (128*N)/2 + 2, 0.5)
+#
+#     h5f = h5py.File(in_file, 'r')
+#     grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom')
+#     grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x]
+#     grd_a = grd_a[slc_y_2, slc_x_2]
+#     bt = grd_a
+#     grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)
+#     grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s)
+#
+#     grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
+#     grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x]
+#     grd_b = grd_b[slc_y_2, slc_x_2]
+#     refl = grd_b
+#     grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)
+#     grd_b = resample_2d_linear_one(x_2, y_2, grd_b, t, s)
+#
+#     grd_c = get_grid_values_all(h5f, label_param)
+#     grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x]
+#     grd_c = grd_c[slc_y_2, slc_x_2]
+#     if label_param != 'cloud_probability':
+#         grd_c = normalize(grd_c, label_param, mean_std_dct)
+#     grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s)
+#
+#     data = np.stack([grd_a, grd_b, grd_c], axis=2)
+#     data = np.expand_dims(data, axis=0)
+#
+#     nn = SRCNN()
+#     out_sr = nn.run_evaluate(data, ckpt_dir)
+#     if label_param != 'cloud_probability':
+#         out_sr = denormalize(out_sr, label_param, mean_std_dct)
+#     if out_file is not None:
+#         np.save(out_file, out_sr)
+#     else:
+#         return out_sr, bt, refl
+
+
 def run_evaluate_static(in_file, out_file, ckpt_dir):
     N = 8
     sub_y, sub_x = (N+1) * 128, (N+1) * 128
@@ -725,17 +769,17 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
     h5f = h5py.File(in_file, 'r')
     grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom')
     grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x]
-    grd_a = grd_a[slc_y_2, slc_x_2]
+    #grd_a = grd_a[slc_y_2, slc_x_2]
     bt = grd_a
     grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)
-    grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s)
+    #grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s)
 
     grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
     grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x]
-    grd_b = grd_b[slc_y_2, slc_x_2]
+    #grd_b = grd_b[slc_y_2, slc_x_2]
     refl = grd_b
     grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)
-    grd_b = resample_2d_linear_one(x_2, y_2, grd_b, t, s)
+    #grd_b = resample_2d_linear_one(x_2, y_2, grd_b, t, s)
 
     grd_c = get_grid_values_all(h5f, label_param)
     grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x]
-- 
GitLab