From 8a24d891cc4cd063c2db7b841cbe5ed36dc63d78 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 28 Nov 2022 15:25:32 -0600 Subject: [PATCH] snapshot... --- modules/deeplearning/srcnn_l1b_l2.py | 52 +++++++++++++++++++++++++--- 1 file changed, 48 insertions(+), 4 deletions(-) diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 2973c69c..4c730626 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -713,6 +713,50 @@ def run_restore_static(directory, ckpt_dir): nn.run_restore(directory, ckpt_dir) +# def run_evaluate_static(in_file, out_file, ckpt_dir): +# N = 8 +# sub_y, sub_x = (N+1) * 128, (N+1) * 128 +# y_0, x_0, = 2500 - int(sub_y/2), 2500 - int(sub_x/2) +# +# slc_y_2, slc_x_2 = slice(1, 128*N + 6, 2), slice(1, 128*N + 6, 2) +# y_2, x_2 = np.arange((128*N)/2 + 3), np.arange((128*N)/2 + 3) +# t, s = np.arange(1, (128*N)/2 + 2, 0.5), np.arange(1, (128*N)/2 + 2, 0.5) +# +# h5f = h5py.File(in_file, 'r') +# grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom') +# grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] +# grd_a = grd_a[slc_y_2, slc_x_2] +# bt = grd_a +# grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) +# grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s) +# +# grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') +# grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] +# grd_b = grd_b[slc_y_2, slc_x_2] +# refl = grd_b +# grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) +# grd_b = resample_2d_linear_one(x_2, y_2, grd_b, t, s) +# +# grd_c = get_grid_values_all(h5f, label_param) +# grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x] +# grd_c = grd_c[slc_y_2, slc_x_2] +# if label_param != 'cloud_probability': +# grd_c = normalize(grd_c, label_param, mean_std_dct) +# grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s) +# +# data = np.stack([grd_a, grd_b, grd_c], axis=2) +# data = np.expand_dims(data, axis=0) +# +# nn = SRCNN() +# out_sr = nn.run_evaluate(data, ckpt_dir) +# if label_param != 'cloud_probability': +# out_sr = denormalize(out_sr, label_param, mean_std_dct) +# if out_file is not None: +# np.save(out_file, out_sr) +# else: +# return out_sr, bt, refl + + def run_evaluate_static(in_file, out_file, ckpt_dir): N = 8 sub_y, sub_x = (N+1) * 128, (N+1) * 128 @@ -725,17 +769,17 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): h5f = h5py.File(in_file, 'r') grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom') grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] - grd_a = grd_a[slc_y_2, slc_x_2] + #grd_a = grd_a[slc_y_2, slc_x_2] bt = grd_a grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) - grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s) + #grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s) grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] - grd_b = grd_b[slc_y_2, slc_x_2] + #grd_b = grd_b[slc_y_2, slc_x_2] refl = grd_b grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) - grd_b = resample_2d_linear_one(x_2, y_2, grd_b, t, s) + #grd_b = resample_2d_linear_one(x_2, y_2, grd_b, t, s) grd_c = get_grid_values_all(h5f, label_param) grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x] -- GitLab