diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index 599acd548ad505a7cdeae05489fbf96680c92c0a..b450a9f41ec39ce340d86bf0a58ec9ef87db421f 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -200,7 +200,7 @@ class SRCNN: self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 - self.n_chans = 6 + self.n_chans = 3 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) @@ -259,16 +259,16 @@ class SRCNN: tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) - for param in sub_fields: - idx = params.index(param) - tmp = input_data[:, idx, :, :] - tmp = tmp[:, self.slc_y_m, self.slc_x_m] - tmp = upsample_nearest(tmp) - if param != 'refl_substddev_ch01': - tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) - else: - tmp = np.where(np.isnan(tmp), 0, tmp) - data_norm.append(tmp) + # for param in sub_fields: + # idx = params.index(param) + # tmp = input_data[:, idx, :, :] + # tmp = tmp[:, self.slc_y_m, self.slc_x_m] + # tmp = upsample_nearest(tmp) + # if param != 'refl_substddev_ch01': + # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + # else: + # tmp = np.where(np.isnan(tmp), 0, tmp) + # data_norm.append(tmp) # for param in data_params_full: # idx = params_i.index(param)