From 86804955ed180c54a83660c3cace37f27fe14027 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Thu, 20 Oct 2022 15:48:44 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/srcnn_l1b_l2.py | 13 ++++++++----- 1 file changed, 8 insertions(+), 5 deletions(-) diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 33a18220..94aa3b36 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -49,8 +49,8 @@ f.close() mean_std_dct.update(mean_std_dct_l1b) mean_std_dct.update(mean_std_dct_l2) -label_param = 'cloud_fraction' -# label_param = 'cld_opd_dcomp' +# label_param = 'cloud_fraction' +label_param = 'cld_opd_dcomp' # label_param = 'cloud_probability' params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', label_param] @@ -251,7 +251,8 @@ class SRCNN: # label = input_data[:, label_idx, 3:131:2, 3:131:2] label = input_data[:, label_idx, 3:131, 3:131] if label_param != 'cloud_fraction': - label = normalize(label, label_param, mean_std_dct) + #label = normalize(label, label_param, mean_std_dct) + label = np.where(np.isnan(label), 0, label) else: label = np.where(np.isnan(label), 0, label) label = np.expand_dims(label, axis=3) @@ -399,9 +400,9 @@ class SRCNN: conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', scale=scale) - conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', scale=scale) + # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', scale=scale) - conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', scale=scale) + # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', scale=scale) conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, kernel_initializer='he_uniform', padding=padding)(conv_b) @@ -646,6 +647,8 @@ class SRCNN: def run(self, directory, ckpt_dir=None, num_data_samples=50000): train_data_files = glob.glob(directory+'data_train_*.npy') valid_data_files = glob.glob(directory+'data_valid_*.npy') + train_data_files = train_data_files[::2] + valid_data_files = valid_data_files[::2] self.setup_pipeline(train_data_files, valid_data_files, num_data_samples) self.build_model() -- GitLab