From 861a6b4952240fc867f172f5a24a8a212ccbd2b9 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 17 Jul 2023 10:31:10 -0500 Subject: [PATCH] `snapshot...` --- modules/deeplearning/cloud_opd_srcnn_abi.py | 75 +++++++++++++++++---- 1 file changed, 62 insertions(+), 13 deletions(-) diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index 773f3f4d..b832b715 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -796,6 +796,55 @@ class SRCNN: else: return cld_opd_sres + def run_inference_test(self, in_file, out_file): + gc.collect() + t0 = time.time() + + group_name_i = 'super/' + group_name_m = 'orig/' + target_param = 'cld_opd_dcomp_1' + + h5f = h5py.File(in_file, 'r') + + refl = get_grid_values_all(h5f, group_name_i+'refl_ch01') + print('FD dims: ', refl.shape) + LEN_Y, LEN_X = refl.shape + + bt = get_grid_values_all(h5f, group_name_m+'temp_ch38') + + cld_opd = get_grid_values_all(h5f, group_name_m+target_param) + + # refl_sub_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub') + # refl_sub_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub') + # refl_sub_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub') + + t1 = time.time() + print('read data time: ', (t1 - t0)) + + LEN_Y -= 8 + LEN_X -= 8 + + LEN_Y = 2 * (LEN_Y - 8) + LEN_X = 2 * (LEN_X - 8) + + t0 = time.time() + # cld_opd_sres, LEN_Y_in, LEN_X_in = self.run_inference_(bt, refl, cld_opd, refl_sub_lo, refl_sub_hi, refl_sub_std, LEN_Y, LEN_X) + cld_opd_sres, LEN_Y_in, LEN_X_in = self.run_inference_(bt, refl, cld_opd, None, None, None, LEN_Y, LEN_X) + t1 = time.time() + print('inference time: ', (t1 - t0)) + print(cld_opd_sres.shape) + + cld_opd_sres_out = np.zeros((LEN_Y_in, LEN_X_in), dtype=np.int8) + border = int((KERNEL_SIZE - 1) / 2) + cld_opd_sres_out[border:LEN_Y_in - border, border:LEN_X_in - border] = cld_opd_sres[0, :, :, 0] + + h5f.close() + + if out_file is not None: + np.save(out_file, (cld_opd_sres_out, bt, refl, cld_opd)) + else: + return cld_opd_sres + def run_inference_(self, bt, refl, cld_opd, refl_sub_lo, refl_sub_hi, refl_sub_std, LEN_Y, LEN_X): self.slc_x_m = slice(1, int(LEN_X / 2) + 4) @@ -841,19 +890,19 @@ class SRCNN: cld_opd_us = smooth_2d(cld_opd_us) cld_opd_us = normalize(cld_opd_us, label_param, mean_std_dct) - refl_sub_lo = np.expand_dims(refl_sub_lo, axis=0) - refl_sub_lo = upsample_nearest(refl_sub_lo) - refl_sub_lo = refl_sub_lo[:, self.slc_y, self.slc_x] - refl_sub_lo = normalize(refl_sub_lo, 'refl_0_65um_nom', mean_std_dct) - - refl_sub_hi = np.expand_dims(refl_sub_hi, axis=0) - refl_sub_hi = upsample_nearest(refl_sub_hi) - refl_sub_hi = refl_sub_hi[:, self.slc_y, self.slc_x] - refl_sub_hi = normalize(refl_sub_hi, 'refl_0_65um_nom', mean_std_dct) - - refl_sub_std = np.expand_dims(refl_sub_std, axis=0) - refl_sub_std = upsample_nearest(refl_sub_std) - refl_sub_std = refl_sub_std[:, self.slc_y, self.slc_x] + # refl_sub_lo = np.expand_dims(refl_sub_lo, axis=0) + # refl_sub_lo = upsample_nearest(refl_sub_lo) + # refl_sub_lo = refl_sub_lo[:, self.slc_y, self.slc_x] + # refl_sub_lo = normalize(refl_sub_lo, 'refl_0_65um_nom', mean_std_dct) + # + # refl_sub_hi = np.expand_dims(refl_sub_hi, axis=0) + # refl_sub_hi = upsample_nearest(refl_sub_hi) + # refl_sub_hi = refl_sub_hi[:, self.slc_y, self.slc_x] + # refl_sub_hi = normalize(refl_sub_hi, 'refl_0_65um_nom', mean_std_dct) + # + # refl_sub_std = np.expand_dims(refl_sub_std, axis=0) + # refl_sub_std = upsample_nearest(refl_sub_std) + # refl_sub_std = refl_sub_std[:, self.slc_y, self.slc_x] t1 = time.time() print('upsample/normalize time: ', (t1 - t0)) -- GitLab