diff --git a/modules/deeplearning/icing_cnn.py b/modules/deeplearning/icing_cnn.py
new file mode 100644
index 0000000000000000000000000000000000000000..9bef8299d7e0e2db943691663b7d3f1ef393fb53
--- /dev/null
+++ b/modules/deeplearning/icing_cnn.py
@@ -0,0 +1,601 @@
+import tensorflow as tf
+from util.setup import logdir, modeldir, cachepath
+from util.util import homedir
+import subprocess
+
+import os, datetime
+import numpy as np
+import pickle
+import h5py
+
+from icing.pirep_goes import split_data, normalize
+
+LOG_DEVICE_PLACEMENT = False
+
+CACHE_DATA_IN_MEM = True
+
+PROC_BATCH_SIZE = 2046
+PROC_BATCH_BUFFER_SIZE = 50000
+NumLabels = 1
+BATCH_SIZE = 256
+NUM_EPOCHS = 50
+
+TRACK_MOVING_AVERAGE = False
+
+
+TRIPLET = False
+CONV3D = False
+
+img_width = 16
+
+mean_std_file = homedir+'data/icing/mean_std_l1b_no_ice.pkl'
+f = open(mean_std_file, 'rb')
+mean_std_dct = pickle.load(f)
+f.close()
+
+# train_params = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha',
+#                 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp']
+#                     #'cloud_phase']
+train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
+               'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
+               'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
+
+
+def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True):
+    with tf.name_scope(block_name):
+        if doDropout:
+            fc = tf.keras.layers.Dropout(drop_rate)(input)
+            fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
+        else:
+            fc = tf.keras.layers.Dense(num_neurons, activation=activation)(input)
+        if doBatchNorm:
+            fc = tf.keras.layers.BatchNormalization()(fc)
+        print(fc.shape)
+        fc_skip = fc
+
+        if doDropout:
+            fc = tf.keras.layers.Dropout(drop_rate)(fc)
+        fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
+        if doBatchNorm:
+            fc = tf.keras.layers.BatchNormalization()(fc)
+        print(fc.shape)
+
+        if doDropout:
+            fc = tf.keras.layers.Dropout(drop_rate)(fc)
+        fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
+        if doBatchNorm:
+            fc = tf.keras.layers.BatchNormalization()(fc)
+        print(fc.shape)
+
+        if doDropout:
+            fc = tf.keras.layers.Dropout(drop_rate)(fc)
+        fc = tf.keras.layers.Dense(num_neurons, activation=None)(fc)
+        if doBatchNorm:
+            fc = tf.keras.layers.BatchNormalization()(fc)
+
+        fc = fc + fc_skip
+        fc = tf.keras.layers.LeakyReLU()(fc)
+        print(fc.shape)
+
+    return fc
+
+
+class IcingIntensityNN:
+    
+    def __init__(self, gpu_device=0, datapath=None):
+        self.train_data = None
+        self.train_label = None
+        self.test_data = None
+        self.test_label = None
+        self.test_data_denorm = None
+        
+        self.train_dataset = None
+        self.inner_train_dataset = None
+        self.test_dataset = None
+        self.X_img = None
+        self.X_prof = None
+        self.X_u = None
+        self.X_v = None
+        self.X_sfc = None
+        self.inputs = []
+        self.y = None
+        self.handle = None
+        self.inner_handle = None
+        self.in_mem_batch = None
+        self.filename = None
+        self.h5f = None
+        self.h5f_l1b = None
+
+        self.logits = None
+
+        self.predict_data = None
+        self.predict_dataset = None
+        self.mean_list = None
+        self.std_list = None
+        
+        self.training_op = None
+        self.correct = None
+        self.accuracy = None
+        self.loss = None
+        self.pred_class = None
+        self.gpu_device = gpu_device
+        self.variable_averages = None
+
+        self.global_step = None
+
+        self.writer_train = None
+        self.writer_valid = None
+
+        self.OUT_OF_RANGE = False
+
+        self.abi = None
+        self.temp = None
+        self.wv = None
+        self.lbfp = None
+        self.sfc = None
+
+        self.in_mem_data_cache = {}
+
+        self.model = None
+        self.optimizer = None
+        self.train_loss = None
+        self.train_accuracy = None
+        self.test_loss = None
+        self.test_accuracy = None
+        self.test_auc = None
+        self.test_recall = None
+        self.test_precision = None
+
+        self.learningRateSchedule = None
+        self.num_data_samples = None
+        self.initial_learning_rate = None
+
+        n_chans = len(train_params)
+        NUM_PARAMS = n_chans
+        if TRIPLET:
+            n_chans *= 3
+        self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans))
+
+        self.inputs.append(self.X_img)
+
+        self.DISK_CACHE = False
+
+        if datapath is not None:
+            self.DISK_CACHE = False
+            f = open(datapath, 'rb')
+            self.in_mem_data_cache = pickle.load(f)
+            f.close()
+
+        tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
+
+        gpus = tf.config.experimental.list_physical_devices('GPU')
+        if gpus:
+            try:
+                # Currently, memory growth needs to be the same across GPUs
+                for gpu in gpus:
+                    tf.config.experimental.set_memory_growth(gpu, True)
+                logical_gpus = tf.config.experimental.list_logical_devices('GPU')
+                print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
+            except RuntimeError as e:
+                # Memory growth must be set before GPUs have been initialized
+                print(e)
+
+    def get_in_mem_data_batch(self, idxs):
+        key = frozenset(idxs)
+
+        if CACHE_DATA_IN_MEM:
+            tup = self.in_mem_data_cache.get(key)
+            if tup is not None:
+                return tup[0], tup[1]
+
+        # sort these to use as numpy indexing arrays
+        nd_idxs = np.array(idxs)
+        nd_idxs = np.sort(nd_idxs)
+
+        data = []
+        for param in train_params:
+            nda = self.h5f[param][nd_idxs, ]
+            nda = normalize(nda, param, mean_std_dct)
+            data.append(nda)
+        data = np.stack(data)
+        data = data.astype(np.float32)
+        data = np.transpose(data, axes=(1, 0))
+
+        label = self.h5f['icing_intensity'][nd_idxs]
+        label = label.astype(np.int32)
+        label = np.where(label == -1, 0, label)
+
+        # binary, two class
+        label = np.where(label != 0, 1, label)
+        label = label.reshape((label.shape[0], 1))
+
+        # keep = (label == 0) | (label == 3) | (label == 4) | (label == 5) | (label == 6)
+        # data = data[keep,]
+        # label = label[keep]
+        # label = np.where(label != 0, 1, label)
+        # label = label.reshape((label.shape[0], 1))
+
+        if CACHE_DATA_IN_MEM:
+            self.in_mem_data_cache[key] = (data, label)
+
+        return data, label
+
+    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
+    def data_function(self, indexes):
+        out = tf.numpy_function(self.get_in_mem_data_batch, [indexes], [tf.float32, tf.int32])
+        return out
+
+    def get_train_dataset(self, indexes):
+        indexes = list(indexes)
+
+        dataset = tf.data.Dataset.from_tensor_slices(indexes)
+        dataset = dataset.batch(PROC_BATCH_SIZE)
+        dataset = dataset.map(self.data_function, num_parallel_calls=8)
+        dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
+        dataset = dataset.prefetch(buffer_size=1)
+        self.train_dataset = dataset
+
+    def get_test_dataset(self, indexes):
+        indexes = list(indexes)
+
+        dataset = tf.data.Dataset.from_tensor_slices(indexes)
+        dataset = dataset.batch(PROC_BATCH_SIZE)
+        dataset = dataset.map(self.data_function, num_parallel_calls=8)
+        self.test_dataset = dataset
+
+    def setup_pipeline(self, filename, train_idxs=None, test_idxs=None):
+        self.filename = filename
+        self.h5f = h5py.File(filename, 'r')
+        time = self.h5f['time']
+        num_obs = time.shape[0]
+        trn_idxs, tst_idxs = split_data(num_obs, skip=4)
+        self.num_data_samples = trn_idxs.shape[0]
+
+        self.get_train_dataset(trn_idxs)
+        self.get_test_dataset(tst_idxs)
+
+        print('num train samples: ', self.num_data_samples)
+        print('BATCH SIZE: ', BATCH_SIZE)
+        print('num test samples: ', tst_idxs.shape[0])
+        print('setup_pipeline: Done')
+
+    def build_1d_cnn(self):
+        print('build_1d_cnn')
+        # padding = 'VALID'
+        padding = 'SAME'
+
+        # activation = tf.nn.relu
+        # activation = tf.nn.elu
+        activation = tf.nn.leaky_relu
+
+        num_filters = 6
+
+        conv = tf.keras.layers.Conv1D(num_filters, 5, strides=1, padding=padding)(self.inputs[1])
+        conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
+        print(conv)
+
+        num_filters *= 2
+        conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
+        conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
+        print(conv)
+
+        num_filters *= 2
+        conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
+        conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
+        print(conv)
+
+        num_filters *= 2
+        conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
+        conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
+        print(conv)
+
+        flat = tf.keras.layers.Flatten()(conv)
+        print(flat)
+
+        return flat
+
+    def build_cnn(self):
+        print('build_cnn')
+        # padding = "VALID"
+        padding = "SAME"
+
+        # activation = tf.nn.relu
+        # activation = tf.nn.elu
+        activation = tf.nn.leaky_relu
+        momentum = 0.99
+
+        num_filters = 8
+
+        conv = tf.keras.layers.Conv2D(num_filters, 5, strides=[1, 1], padding=padding, activation=activation)(self.inputs[0])
+        conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
+        conv = tf.keras.layers.BatchNormalization()(conv)
+        print(conv.shape)
+
+        num_filters *= 2
+        conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
+        conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
+        conv = tf.keras.layers.BatchNormalization()(conv)
+        print(conv.shape)
+
+        num_filters *= 2
+        conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
+        conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
+        conv = tf.keras.layers.BatchNormalization()(conv)
+        print(conv.shape)
+
+        num_filters *= 2
+        conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
+        conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
+        conv = tf.keras.layers.BatchNormalization()(conv)
+        print(conv.shape)
+
+        # num_filters *= 2
+        # conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
+        # conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
+        # conv = tf.keras.layers.BatchNormalization()(conv)
+        # print(conv.shape)
+
+        flat = tf.keras.layers.Flatten()(conv)
+
+        return flat
+
+    def build_dnn(self, input_layer=None):
+        print('build fully connected layer')
+        drop_rate = 0.5
+
+        # activation = tf.nn.relu
+        # activation = tf.nn.elu
+        activation = tf.nn.leaky_relu
+        momentum = 0.99
+        
+        if input_layer is not None:
+            flat = input_layer
+            n_hidden = input_layer.shape[1]
+        else:
+            flat = self.X_img
+            n_hidden = self.X_img.shape[1]
+
+        fac = 2
+
+        fc = build_residual_block(flat, drop_rate, fac*n_hidden, activation, 'Residual_Block_1', doBatchNorm=True)
+
+        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2', doBatchNorm=True)
+
+        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3', doBatchNorm=True)
+
+        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4', doBatchNorm=True)
+
+        # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5', doBatchNorm=True)
+        #
+        # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_6', doBatchNorm=True)
+        #
+        # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_7', doBatchNorm=True)
+        #
+        # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_8', doBatchNorm=True)
+
+        fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc)
+        fc = tf.keras.layers.BatchNormalization()(fc)
+        print(fc.shape)
+
+        # activation = tf.nn.softmax
+        activation = tf.nn.sigmoid  # For binary
+
+        logits = tf.keras.layers.Dense(NumLabels, activation=activation)(fc)
+        print(logits.shape)
+        
+        self.logits = logits
+
+    def build_training(self):
+        self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False)  # for two-class only
+        #self.loss = tf.keras.losses.SparseCategoricalCrossentropy()  # For multi-class
+
+        # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
+        initial_learning_rate = 0.002
+        decay_rate = 0.95
+        steps_per_epoch = int(self.num_data_samples/BATCH_SIZE)  # one epoch
+        # decay_steps = int(steps_per_epoch / 2)
+        decay_steps = 4 * steps_per_epoch
+        print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)
+
+        self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)
+
+        optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)
+
+        if TRACK_MOVING_AVERAGE:
+            ema = tf.train.ExponentialMovingAverage(decay=0.999)
+
+            with tf.control_dependencies([optimizer]):
+                optimizer = ema.apply(self.model.trainable_variables)
+
+        self.optimizer = optimizer
+        self.initial_learning_rate = initial_learning_rate
+
+    def build_evaluation(self):
+        self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
+        self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
+        self.test_auc = tf.keras.metrics.AUC(name='test_auc')
+        self.test_recall = tf.keras.metrics.Recall(name='test_recall')
+        self.test_precision = tf.keras.metrics.Precision(name='test_precision')
+        self.train_loss = tf.keras.metrics.Mean(name='train_loss')
+        self.test_loss = tf.keras.metrics.Mean(name='test_loss')
+
+    def build_predict(self):
+        _, pred = tf.nn.top_k(self.logits)
+        self.pred_class = pred
+
+        if TRACK_MOVING_AVERAGE:
+            self.variable_averages = tf.train.ExponentialMovingAverage(0.999, self.global_step)
+            self.variable_averages.apply(self.model.trainable_variables)
+
+    @tf.function
+    def train_step(self, mini_batch):
+        inputs = [mini_batch[0]]
+        labels = mini_batch[1]
+        with tf.GradientTape() as tape:
+            pred = self.model(inputs, training=True)
+            loss = self.loss(labels, pred)
+            total_loss = loss
+            if len(self.model.losses) > 0:
+                reg_loss = tf.math.add_n(self.model.losses)
+                total_loss = loss + reg_loss
+        gradients = tape.gradient(total_loss, self.model.trainable_variables)
+        self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
+
+        self.train_loss(loss)
+        self.train_accuracy(labels, pred)
+
+        return loss
+
+    @tf.function
+    def test_step(self, mini_batch):
+        inputs = [mini_batch[0]]
+        labels = mini_batch[1]
+        pred = self.model(inputs, training=False)
+        t_loss = self.loss(labels, pred)
+
+        self.test_loss(t_loss)
+        self.test_accuracy(labels, pred)
+        self.test_auc(labels, pred)
+        self.test_recall(labels, pred)
+        self.test_precision(labels, pred)
+
+    def predict(self, mini_batch):
+        inputs = [mini_batch[0]]
+        labels = mini_batch[1]
+        pred = self.model(inputs, training=False)
+        t_loss = self.loss(labels, pred)
+
+    def do_training(self, ckpt_dir=None):
+
+        if ckpt_dir is None:
+            if not os.path.exists(modeldir):
+                os.mkdir(modeldir)
+            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
+            ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
+        else:
+            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
+            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
+
+        self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
+        self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
+
+        step = 0
+        total_time = 0
+
+        for epoch in range(NUM_EPOCHS):
+            self.train_loss.reset_states()
+            self.train_accuracy.reset_states()
+
+            t0 = datetime.datetime.now().timestamp()
+
+            proc_batch_cnt = 0
+            n_samples = 0
+
+            for data0, label in self.train_dataset:
+                trn_ds = tf.data.Dataset.from_tensor_slices((data0, label))
+                trn_ds = trn_ds.batch(BATCH_SIZE)
+                for mini_batch in trn_ds:
+                    if self.learningRateSchedule is not None:
+                        loss = self.train_step(mini_batch)
+
+                    if (step % 100) == 0:
+
+                        with self.writer_train.as_default():
+                            tf.summary.scalar('loss_trn', loss.numpy(), step=step)
+                            tf.summary.scalar('num_train_steps', step, step=step)
+                            tf.summary.scalar('num_epochs', epoch, step=step)
+
+                        self.test_loss.reset_states()
+                        self.test_accuracy.reset_states()
+
+                        for data0_tst, label_tst in self.test_dataset:
+                            tst_ds = tf.data.Dataset.from_tensor_slices((data0_tst, label_tst))
+                            tst_ds = tst_ds.batch(BATCH_SIZE)
+                            for mini_batch_test in tst_ds:
+                                self.test_step(mini_batch_test)
+
+                        with self.writer_valid.as_default():
+                            tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
+                            tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
+                            tf.summary.scalar('num_train_steps', step, step=step)
+                            tf.summary.scalar('num_epochs', epoch, step=step)
+
+                        print('****** test loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
+
+                    step += 1
+                    print('train loss: ', loss.numpy())
+
+                proc_batch_cnt += 1
+                n_samples += data0.shape[0]
+                print('proc_batch_cnt: ', proc_batch_cnt, n_samples)
+
+            t1 = datetime.datetime.now().timestamp()
+            print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
+            total_time += (t1-t0)
+
+            self.test_loss.reset_states()
+            self.test_accuracy.reset_states()
+            for data0, label in self.test_dataset:
+                ds = tf.data.Dataset.from_tensor_slices((data0, label))
+                ds = ds.batch(BATCH_SIZE)
+                for mini_batch in ds:
+                    self.test_step(mini_batch)
+
+            print('loss, acc : ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
+            print('---------------------------------------------------------')
+            ckpt_manager.save()
+
+            if self.DISK_CACHE and epoch == 0:
+                f = open(cachepath, 'wb')
+                pickle.dump(self.in_mem_data_cache, f)
+                f.close()
+
+        print('total time: ', total_time)
+        self.writer_train.close()
+        self.writer_valid.close()
+
+    def build_model(self):
+        flat = self.build_cnn()
+        # flat_1d = self.build_1d_cnn()
+        # flat = tf.keras.layers.concatenate([flat, flat_1d, flat_anc])
+        # flat = tf.keras.layers.concatenate([flat, flat_1d])
+        # self.build_dnn(flat)
+        self.build_dnn(flat)
+        self.model = tf.keras.Model(self.inputs, self.logits)
+
+    def restore(self, ckpt_dir):
+
+        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
+        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
+
+        ckpt.restore(ckpt_manager.latest_checkpoint)
+
+        self.test_loss.reset_states()
+        self.test_accuracy.reset_states()
+
+        for abi_tst, temp_tst, lbfp_tst in self.test_dataset:
+            ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst))
+            ds = ds.batch(BATCH_SIZE)
+            for mini_batch_test in ds:
+                self.predict(mini_batch_test)
+        print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result())
+
+    def run(self, filename, filename_l1b=None, train_dict=None, valid_dict=None):
+        with tf.device('/device:GPU:'+str(self.gpu_device)):
+            self.setup_pipeline(filename, train_idxs=train_dict, test_idxs=valid_dict)
+            self.build_model()
+            self.build_training()
+            self.build_evaluation()
+            self.do_training()
+
+    def run_restore(self, matchup_dict, ckpt_dir):
+        self.setup_pipeline(None, None, matchup_dict)
+        self.build_model()
+        self.build_training()
+        self.build_evaluation()
+        self.restore(ckpt_dir)
+
+
+if __name__ == "__main__":
+    nn = IcingIntensityNN()
+    nn.run('matchup_filename')