diff --git a/modules/deeplearning/icing_cnn.py b/modules/deeplearning/icing_cnn.py new file mode 100644 index 0000000000000000000000000000000000000000..9bef8299d7e0e2db943691663b7d3f1ef393fb53 --- /dev/null +++ b/modules/deeplearning/icing_cnn.py @@ -0,0 +1,601 @@ +import tensorflow as tf +from util.setup import logdir, modeldir, cachepath +from util.util import homedir +import subprocess + +import os, datetime +import numpy as np +import pickle +import h5py + +from icing.pirep_goes import split_data, normalize + +LOG_DEVICE_PLACEMENT = False + +CACHE_DATA_IN_MEM = True + +PROC_BATCH_SIZE = 2046 +PROC_BATCH_BUFFER_SIZE = 50000 +NumLabels = 1 +BATCH_SIZE = 256 +NUM_EPOCHS = 50 + +TRACK_MOVING_AVERAGE = False + + +TRIPLET = False +CONV3D = False + +img_width = 16 + +mean_std_file = homedir+'data/icing/mean_std_l1b_no_ice.pkl' +f = open(mean_std_file, 'rb') +mean_std_dct = pickle.load(f) +f.close() + +# train_params = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha', +# 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp'] +# #'cloud_phase'] +train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', + 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', + 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] + + +def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True): + with tf.name_scope(block_name): + if doDropout: + fc = tf.keras.layers.Dropout(drop_rate)(input) + fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) + else: + fc = tf.keras.layers.Dense(num_neurons, activation=activation)(input) + if doBatchNorm: + fc = tf.keras.layers.BatchNormalization()(fc) + print(fc.shape) + fc_skip = fc + + if doDropout: + fc = tf.keras.layers.Dropout(drop_rate)(fc) + fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) + if doBatchNorm: + fc = tf.keras.layers.BatchNormalization()(fc) + print(fc.shape) + + if doDropout: + fc = tf.keras.layers.Dropout(drop_rate)(fc) + fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc) + if doBatchNorm: + fc = tf.keras.layers.BatchNormalization()(fc) + print(fc.shape) + + if doDropout: + fc = tf.keras.layers.Dropout(drop_rate)(fc) + fc = tf.keras.layers.Dense(num_neurons, activation=None)(fc) + if doBatchNorm: + fc = tf.keras.layers.BatchNormalization()(fc) + + fc = fc + fc_skip + fc = tf.keras.layers.LeakyReLU()(fc) + print(fc.shape) + + return fc + + +class IcingIntensityNN: + + def __init__(self, gpu_device=0, datapath=None): + self.train_data = None + self.train_label = None + self.test_data = None + self.test_label = None + self.test_data_denorm = None + + self.train_dataset = None + self.inner_train_dataset = None + self.test_dataset = None + self.X_img = None + self.X_prof = None + self.X_u = None + self.X_v = None + self.X_sfc = None + self.inputs = [] + self.y = None + self.handle = None + self.inner_handle = None + self.in_mem_batch = None + self.filename = None + self.h5f = None + self.h5f_l1b = None + + self.logits = None + + self.predict_data = None + self.predict_dataset = None + self.mean_list = None + self.std_list = None + + self.training_op = None + self.correct = None + self.accuracy = None + self.loss = None + self.pred_class = None + self.gpu_device = gpu_device + self.variable_averages = None + + self.global_step = None + + self.writer_train = None + self.writer_valid = None + + self.OUT_OF_RANGE = False + + self.abi = None + self.temp = None + self.wv = None + self.lbfp = None + self.sfc = None + + self.in_mem_data_cache = {} + + self.model = None + self.optimizer = None + self.train_loss = None + self.train_accuracy = None + self.test_loss = None + self.test_accuracy = None + self.test_auc = None + self.test_recall = None + self.test_precision = None + + self.learningRateSchedule = None + self.num_data_samples = None + self.initial_learning_rate = None + + n_chans = len(train_params) + NUM_PARAMS = n_chans + if TRIPLET: + n_chans *= 3 + self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans)) + + self.inputs.append(self.X_img) + + self.DISK_CACHE = False + + if datapath is not None: + self.DISK_CACHE = False + f = open(datapath, 'rb') + self.in_mem_data_cache = pickle.load(f) + f.close() + + tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) + + gpus = tf.config.experimental.list_physical_devices('GPU') + if gpus: + try: + # Currently, memory growth needs to be the same across GPUs + for gpu in gpus: + tf.config.experimental.set_memory_growth(gpu, True) + logical_gpus = tf.config.experimental.list_logical_devices('GPU') + print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") + except RuntimeError as e: + # Memory growth must be set before GPUs have been initialized + print(e) + + def get_in_mem_data_batch(self, idxs): + key = frozenset(idxs) + + if CACHE_DATA_IN_MEM: + tup = self.in_mem_data_cache.get(key) + if tup is not None: + return tup[0], tup[1] + + # sort these to use as numpy indexing arrays + nd_idxs = np.array(idxs) + nd_idxs = np.sort(nd_idxs) + + data = [] + for param in train_params: + nda = self.h5f[param][nd_idxs, ] + nda = normalize(nda, param, mean_std_dct) + data.append(nda) + data = np.stack(data) + data = data.astype(np.float32) + data = np.transpose(data, axes=(1, 0)) + + label = self.h5f['icing_intensity'][nd_idxs] + label = label.astype(np.int32) + label = np.where(label == -1, 0, label) + + # binary, two class + label = np.where(label != 0, 1, label) + label = label.reshape((label.shape[0], 1)) + + # keep = (label == 0) | (label == 3) | (label == 4) | (label == 5) | (label == 6) + # data = data[keep,] + # label = label[keep] + # label = np.where(label != 0, 1, label) + # label = label.reshape((label.shape[0], 1)) + + if CACHE_DATA_IN_MEM: + self.in_mem_data_cache[key] = (data, label) + + return data, label + + @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) + def data_function(self, indexes): + out = tf.numpy_function(self.get_in_mem_data_batch, [indexes], [tf.float32, tf.int32]) + return out + + def get_train_dataset(self, indexes): + indexes = list(indexes) + + dataset = tf.data.Dataset.from_tensor_slices(indexes) + dataset = dataset.batch(PROC_BATCH_SIZE) + dataset = dataset.map(self.data_function, num_parallel_calls=8) + dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) + dataset = dataset.prefetch(buffer_size=1) + self.train_dataset = dataset + + def get_test_dataset(self, indexes): + indexes = list(indexes) + + dataset = tf.data.Dataset.from_tensor_slices(indexes) + dataset = dataset.batch(PROC_BATCH_SIZE) + dataset = dataset.map(self.data_function, num_parallel_calls=8) + self.test_dataset = dataset + + def setup_pipeline(self, filename, train_idxs=None, test_idxs=None): + self.filename = filename + self.h5f = h5py.File(filename, 'r') + time = self.h5f['time'] + num_obs = time.shape[0] + trn_idxs, tst_idxs = split_data(num_obs, skip=4) + self.num_data_samples = trn_idxs.shape[0] + + self.get_train_dataset(trn_idxs) + self.get_test_dataset(tst_idxs) + + print('num train samples: ', self.num_data_samples) + print('BATCH SIZE: ', BATCH_SIZE) + print('num test samples: ', tst_idxs.shape[0]) + print('setup_pipeline: Done') + + def build_1d_cnn(self): + print('build_1d_cnn') + # padding = 'VALID' + padding = 'SAME' + + # activation = tf.nn.relu + # activation = tf.nn.elu + activation = tf.nn.leaky_relu + + num_filters = 6 + + conv = tf.keras.layers.Conv1D(num_filters, 5, strides=1, padding=padding)(self.inputs[1]) + conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) + print(conv) + + num_filters *= 2 + conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) + conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) + print(conv) + + num_filters *= 2 + conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) + conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) + print(conv) + + num_filters *= 2 + conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv) + conv = tf.keras.layers.MaxPool1D(padding=padding)(conv) + print(conv) + + flat = tf.keras.layers.Flatten()(conv) + print(flat) + + return flat + + def build_cnn(self): + print('build_cnn') + # padding = "VALID" + padding = "SAME" + + # activation = tf.nn.relu + # activation = tf.nn.elu + activation = tf.nn.leaky_relu + momentum = 0.99 + + num_filters = 8 + + conv = tf.keras.layers.Conv2D(num_filters, 5, strides=[1, 1], padding=padding, activation=activation)(self.inputs[0]) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) + + num_filters *= 2 + conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) + + num_filters *= 2 + conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) + + num_filters *= 2 + conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) + + # num_filters *= 2 + # conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv) + # conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + # conv = tf.keras.layers.BatchNormalization()(conv) + # print(conv.shape) + + flat = tf.keras.layers.Flatten()(conv) + + return flat + + def build_dnn(self, input_layer=None): + print('build fully connected layer') + drop_rate = 0.5 + + # activation = tf.nn.relu + # activation = tf.nn.elu + activation = tf.nn.leaky_relu + momentum = 0.99 + + if input_layer is not None: + flat = input_layer + n_hidden = input_layer.shape[1] + else: + flat = self.X_img + n_hidden = self.X_img.shape[1] + + fac = 2 + + fc = build_residual_block(flat, drop_rate, fac*n_hidden, activation, 'Residual_Block_1', doBatchNorm=True) + + fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2', doBatchNorm=True) + + fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3', doBatchNorm=True) + + fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4', doBatchNorm=True) + + # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5', doBatchNorm=True) + # + # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_6', doBatchNorm=True) + # + # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_7', doBatchNorm=True) + # + # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_8', doBatchNorm=True) + + fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc) + fc = tf.keras.layers.BatchNormalization()(fc) + print(fc.shape) + + # activation = tf.nn.softmax + activation = tf.nn.sigmoid # For binary + + logits = tf.keras.layers.Dense(NumLabels, activation=activation)(fc) + print(logits.shape) + + self.logits = logits + + def build_training(self): + self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only + #self.loss = tf.keras.losses.SparseCategoricalCrossentropy() # For multi-class + + # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) + initial_learning_rate = 0.002 + decay_rate = 0.95 + steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch + # decay_steps = int(steps_per_epoch / 2) + decay_steps = 4 * steps_per_epoch + print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) + + self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) + + optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) + + if TRACK_MOVING_AVERAGE: + ema = tf.train.ExponentialMovingAverage(decay=0.999) + + with tf.control_dependencies([optimizer]): + optimizer = ema.apply(self.model.trainable_variables) + + self.optimizer = optimizer + self.initial_learning_rate = initial_learning_rate + + def build_evaluation(self): + self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy') + self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy') + self.test_auc = tf.keras.metrics.AUC(name='test_auc') + self.test_recall = tf.keras.metrics.Recall(name='test_recall') + self.test_precision = tf.keras.metrics.Precision(name='test_precision') + self.train_loss = tf.keras.metrics.Mean(name='train_loss') + self.test_loss = tf.keras.metrics.Mean(name='test_loss') + + def build_predict(self): + _, pred = tf.nn.top_k(self.logits) + self.pred_class = pred + + if TRACK_MOVING_AVERAGE: + self.variable_averages = tf.train.ExponentialMovingAverage(0.999, self.global_step) + self.variable_averages.apply(self.model.trainable_variables) + + @tf.function + def train_step(self, mini_batch): + inputs = [mini_batch[0]] + labels = mini_batch[1] + with tf.GradientTape() as tape: + pred = self.model(inputs, training=True) + loss = self.loss(labels, pred) + total_loss = loss + if len(self.model.losses) > 0: + reg_loss = tf.math.add_n(self.model.losses) + total_loss = loss + reg_loss + gradients = tape.gradient(total_loss, self.model.trainable_variables) + self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) + + self.train_loss(loss) + self.train_accuracy(labels, pred) + + return loss + + @tf.function + def test_step(self, mini_batch): + inputs = [mini_batch[0]] + labels = mini_batch[1] + pred = self.model(inputs, training=False) + t_loss = self.loss(labels, pred) + + self.test_loss(t_loss) + self.test_accuracy(labels, pred) + self.test_auc(labels, pred) + self.test_recall(labels, pred) + self.test_precision(labels, pred) + + def predict(self, mini_batch): + inputs = [mini_batch[0]] + labels = mini_batch[1] + pred = self.model(inputs, training=False) + t_loss = self.loss(labels, pred) + + def do_training(self, ckpt_dir=None): + + if ckpt_dir is None: + if not os.path.exists(modeldir): + os.mkdir(modeldir) + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) + else: + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + + self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) + self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) + + step = 0 + total_time = 0 + + for epoch in range(NUM_EPOCHS): + self.train_loss.reset_states() + self.train_accuracy.reset_states() + + t0 = datetime.datetime.now().timestamp() + + proc_batch_cnt = 0 + n_samples = 0 + + for data0, label in self.train_dataset: + trn_ds = tf.data.Dataset.from_tensor_slices((data0, label)) + trn_ds = trn_ds.batch(BATCH_SIZE) + for mini_batch in trn_ds: + if self.learningRateSchedule is not None: + loss = self.train_step(mini_batch) + + if (step % 100) == 0: + + with self.writer_train.as_default(): + tf.summary.scalar('loss_trn', loss.numpy(), step=step) + tf.summary.scalar('num_train_steps', step, step=step) + tf.summary.scalar('num_epochs', epoch, step=step) + + self.test_loss.reset_states() + self.test_accuracy.reset_states() + + for data0_tst, label_tst in self.test_dataset: + tst_ds = tf.data.Dataset.from_tensor_slices((data0_tst, label_tst)) + tst_ds = tst_ds.batch(BATCH_SIZE) + for mini_batch_test in tst_ds: + self.test_step(mini_batch_test) + + with self.writer_valid.as_default(): + tf.summary.scalar('loss_val', self.test_loss.result(), step=step) + tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) + tf.summary.scalar('num_train_steps', step, step=step) + tf.summary.scalar('num_epochs', epoch, step=step) + + print('****** test loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) + + step += 1 + print('train loss: ', loss.numpy()) + + proc_batch_cnt += 1 + n_samples += data0.shape[0] + print('proc_batch_cnt: ', proc_batch_cnt, n_samples) + + t1 = datetime.datetime.now().timestamp() + print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) + total_time += (t1-t0) + + self.test_loss.reset_states() + self.test_accuracy.reset_states() + for data0, label in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((data0, label)) + ds = ds.batch(BATCH_SIZE) + for mini_batch in ds: + self.test_step(mini_batch) + + print('loss, acc : ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) + print('---------------------------------------------------------') + ckpt_manager.save() + + if self.DISK_CACHE and epoch == 0: + f = open(cachepath, 'wb') + pickle.dump(self.in_mem_data_cache, f) + f.close() + + print('total time: ', total_time) + self.writer_train.close() + self.writer_valid.close() + + def build_model(self): + flat = self.build_cnn() + # flat_1d = self.build_1d_cnn() + # flat = tf.keras.layers.concatenate([flat, flat_1d, flat_anc]) + # flat = tf.keras.layers.concatenate([flat, flat_1d]) + # self.build_dnn(flat) + self.build_dnn(flat) + self.model = tf.keras.Model(self.inputs, self.logits) + + def restore(self, ckpt_dir): + + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + + ckpt.restore(ckpt_manager.latest_checkpoint) + + self.test_loss.reset_states() + self.test_accuracy.reset_states() + + for abi_tst, temp_tst, lbfp_tst in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst)) + ds = ds.batch(BATCH_SIZE) + for mini_batch_test in ds: + self.predict(mini_batch_test) + print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result()) + + def run(self, filename, filename_l1b=None, train_dict=None, valid_dict=None): + with tf.device('/device:GPU:'+str(self.gpu_device)): + self.setup_pipeline(filename, train_idxs=train_dict, test_idxs=valid_dict) + self.build_model() + self.build_training() + self.build_evaluation() + self.do_training() + + def run_restore(self, matchup_dict, ckpt_dir): + self.setup_pipeline(None, None, matchup_dict) + self.build_model() + self.build_training() + self.build_evaluation() + self.restore(ckpt_dir) + + +if __name__ == "__main__": + nn = IcingIntensityNN() + nn.run('matchup_filename')