diff --git a/modules/aeolus/aeolus_amv.py b/modules/aeolus/aeolus_amv.py
index 986b91a6559613d9c4753191d56655aab8253549..da90148971474ef208c8ecfe0acc175559e1cb11 100644
--- a/modules/aeolus/aeolus_amv.py
+++ b/modules/aeolus/aeolus_amv.py
@@ -5,7 +5,7 @@ import numpy as np
 import xarray as xr
 from netCDF4 import Dataset, Dimension, Variable
 from aeolus.geos_nav import GEOSNavigation
-from util.util import haversine_np, LatLonTuple
+from util.util import haversine_np, LatLonTuple, GenericException
 from amv.intercompare import best_fit, bin_data_by, get_press_bin_ranges, spd_dir_from_uv, uv_from_spd_dir, \
     direction_difference, run_best_fit_gfs
 import math
@@ -22,17 +22,12 @@ num_elems = 5424
 num_lines = 5424
 
 
-class MyGenericException(Exception):
-    def __init__(self, message):
-        self.message = message
-
-
 class AMVFiles:
 
     def __init__(self, files_path, file_time_span, pattern, band='14'):
         self.flist = glob.glob(files_path + pattern)
         if len(self.flist) == 0:
-            raise MyGenericException('no matching files found in: ' + files_path)
+            raise GenericException('no matching files found in: ' + files_path)
         self.band = band
         self.ftimes = []
         self.span_seconds = datetime.timedelta(minutes=file_time_span).seconds
@@ -585,71 +580,71 @@ def get_product_at_lat_lons(files, ts, lons, lats, filepath=None):
     return np.transpose(aaa, axes=[1, 0])
 
 
-def run_best_fit2(raob_to_amv_dct, raob_dct, gfs_filename=None):
-    bfs_dct ={}
-    keys = list(raob_to_amv_dct.keys())
-
-    do_gfs_best_fit = False
-    gfs_press = None
-    gfs_spd = None
-    gfs_dir = None
-
-    if gfs_filename is not None:
-        locs = np.array(keys)
-        do_gfs_best_fit = True
-        xr_dataset = xr.open_dataset(gfs_filename)
-        gfs_press = xr_dataset['pressure levels']
-        gfs_press = gfs_press.values
-        gfs_press = gfs_press[::-1]
-
-        uv_wind = get_vert_profile_s(xr_dataset, ['u-wind', 'v-wind'], locs[:, 1], locs[:, 0], method='nearest')
-        uv_wind = uv_wind.values
-        wspd, wdir = spd_dir_from_uv(uv_wind[0, :, :], uv_wind[1, :, :])
-        wspd = wspd.magnitude
-        wdir = wdir.magnitude
-        gfs_spd = wspd[:, ::-1]
-        gfs_dir = wdir[:, ::-1]
-
-    for key_idx, key in enumerate(keys):
-        bf_list = []
-        raob_match_list = []
-        bf_gfs_list = []
-
-        raob = raob_dct.get(key)
-        raob_prs = raob[:, 0]
-        raob_spd = raob[:, 2]
-        raob_dir = raob[:, 3]
-        amvs = raob_to_amv_dct.get(key)
-        num_amvs = amvs.shape[1]
-        for i in range(num_amvs):
-            amv_lon = amvs[0, i]
-            amv_lat = amvs[1, i]
-            amv_prs = amvs[4, i]
-            amv_spd = amvs[5, i]
-            amv_dir = amvs[6, i]
-
-            bf = best_fit(amv_spd, amv_dir, amv_prs, amv_lat, amv_lon, raob_spd, raob_dir, raob_prs)
-            bf_list.append(bf)
-
-            pdiff = amv_prs - raob_prs
-            lev_idx = np.argmin(np.abs(pdiff))
-            if np.abs(pdiff[lev_idx]) > 100.0:
-                tup = (raob_spd[lev_idx], raob_dir[lev_idx], raob_prs[lev_idx], -9)
-            else:
-                tup = (raob_spd[lev_idx], raob_dir[lev_idx], raob_prs[lev_idx], 0)
-            raob_match_list.append(tup)
-
-            if do_gfs_best_fit:
-                bf = best_fit(amv_spd, amv_dir, amv_prs, amv_lat, amv_lon, gfs_spd[key_idx], gfs_dir[key_idx], gfs_press)
-                bf_gfs_list.append(bf)
-
-        bf_nd = np.array(bf_list)
-        raob_match_nd = np.array(raob_match_list)
-        bf_gfs_nd = np.array(bf_gfs_list)
-
-        bfs_dct[key] = (bf_nd, raob_match_nd, bf_gfs_nd)
-
-    return bfs_dct
+# def run_best_fit2(raob_to_amv_dct, raob_dct, gfs_filename=None):
+#     bfs_dct ={}
+#     keys = list(raob_to_amv_dct.keys())
+#
+#     do_gfs_best_fit = False
+#     gfs_press = None
+#     gfs_spd = None
+#     gfs_dir = None
+#
+#     if gfs_filename is not None:
+#         locs = np.array(keys)
+#         do_gfs_best_fit = True
+#         xr_dataset = xr.open_dataset(gfs_filename)
+#         gfs_press = xr_dataset['pressure levels']
+#         gfs_press = gfs_press.values
+#         gfs_press = gfs_press[::-1]
+#
+#         uv_wind = get_vert_profile_s(xr_dataset, ['u-wind', 'v-wind'], locs[:, 1], locs[:, 0], method='nearest')
+#         uv_wind = uv_wind.values
+#         wspd, wdir = spd_dir_from_uv(uv_wind[0, :, :], uv_wind[1, :, :])
+#         wspd = wspd.magnitude
+#         wdir = wdir.magnitude
+#         gfs_spd = wspd[:, ::-1]
+#         gfs_dir = wdir[:, ::-1]
+#
+#     for key_idx, key in enumerate(keys):
+#         bf_list = []
+#         raob_match_list = []
+#         bf_gfs_list = []
+#
+#         raob = raob_dct.get(key)
+#         raob_prs = raob[:, 0]
+#         raob_spd = raob[:, 2]
+#         raob_dir = raob[:, 3]
+#         amvs = raob_to_amv_dct.get(key)
+#         num_amvs = amvs.shape[1]
+#         for i in range(num_amvs):
+#             amv_lon = amvs[0, i]
+#             amv_lat = amvs[1, i]
+#             amv_prs = amvs[4, i]
+#             amv_spd = amvs[5, i]
+#             amv_dir = amvs[6, i]
+#
+#             bf = best_fit(amv_spd, amv_dir, amv_prs, amv_lat, amv_lon, raob_spd, raob_dir, raob_prs)
+#             bf_list.append(bf)
+#
+#             pdiff = amv_prs - raob_prs
+#             lev_idx = np.argmin(np.abs(pdiff))
+#             if np.abs(pdiff[lev_idx]) > 100.0:
+#                 tup = (raob_spd[lev_idx], raob_dir[lev_idx], raob_prs[lev_idx], -9)
+#             else:
+#                 tup = (raob_spd[lev_idx], raob_dir[lev_idx], raob_prs[lev_idx], 0)
+#             raob_match_list.append(tup)
+#
+#             if do_gfs_best_fit:
+#                 bf = best_fit(amv_spd, amv_dir, amv_prs, amv_lat, amv_lon, gfs_spd[key_idx], gfs_dir[key_idx], gfs_press)
+#                 bf_gfs_list.append(bf)
+#
+#         bf_nd = np.array(bf_list)
+#         raob_match_nd = np.array(raob_match_list)
+#         bf_gfs_nd = np.array(bf_gfs_list)
+#
+#         bfs_dct[key] = (bf_nd, raob_match_nd, bf_gfs_nd)
+#
+#     return bfs_dct
 
 
 def run_best_fit(raob_to_amv_dct, raob_dct, gfs_filename=None):
diff --git a/modules/amv/aeolus.py b/modules/amv/aeolus.py
index 4d9c6e76f371eda9585f4c8e910cf34ceed2bb23..c406492fb4e8c80bbf18733bb935eb1e04da661f 100644
--- a/modules/amv/aeolus.py
+++ b/modules/amv/aeolus.py
@@ -16,11 +16,6 @@ from util.util import bin_data_by, get_bin_ranges
 import math
 
 
-class MyGenericException(Exception):
-    def __init__(self, message):
-        self.message = message
-
-
 datapath = '/apollo/cloud/personal/stevew/IWW15/G16/fulldisk/CLAVRX'
 datadirs = ['20190825', '20190826', '20190827', '20190828', '20190829', '20190830', '20190831', '20190901', '20190902', '20190903', '20190904', '20190905']
 
diff --git a/modules/deeplearning/amv_raob.py b/modules/deeplearning/amv_raob.py
index cdd9682f407ea3f90e15bde48314b6945978b938..2a5f47f7fdae02cc03663d7552cae0856f0cffce 100644
--- a/modules/deeplearning/amv_raob.py
+++ b/modules/deeplearning/amv_raob.py
@@ -47,11 +47,6 @@ H08_lat_range = [-78, 78]
 H08_lon_range = [62, 218]
 
 
-class MyGenericException(Exception):
-    def __init__(self, message):
-        self.message = message
-
-
 amv_hdr_list = ['lat', 'lon', 'tbox', 'sbox', 'spd', 'dir', 'pres', 'lowl', 'mspd', 'mdir',
                 'alb', 'corr', 'tmet', 'perr', 'qi', 'cqi', 'qif']
 
diff --git a/modules/util/util.py b/modules/util/util.py
index 5c1314d42f2e455d5258010e6090b98d81e4ff7a..7c7bb2869eb3539375da8d504185db1698a3caf2 100644
--- a/modules/util/util.py
+++ b/modules/util/util.py
@@ -6,7 +6,7 @@ from collections import namedtuple
 LatLonTuple = namedtuple('LatLonTuple', ['lat', 'lon'])
 
 
-class MyGenericException(Exception):
+class GenericException(Exception):
     def __init__(self, message):
         self.message = message