diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index b450a9f41ec39ce340d86bf0a58ec9ef87db421f..b1a29aa2139c256c3a785706ebe807c58178a90f 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -685,25 +685,25 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): refl = get_grid_values_all(h5f, 'refl_0_65um_nom') ylen, xlen = refl.shape - refl = refl[int(ylen/2):ylen, :] + # refl = refl[int(ylen/2):ylen, :] LEN_Y, LEN_X = refl.shape bt = get_grid_values_all(h5f, 'temp_11_0um_nom') ylen, xlen = bt.shape - bt = bt[int(ylen/2):ylen, :] + # bt = bt[int(ylen/2):ylen, :] cld_opd = get_grid_values_all(h5f, label_param) ylen, xlen = cld_opd.shape - cld_opd = cld_opd[int(ylen/2):ylen, :] + # cld_opd = cld_opd[int(ylen/2):ylen, :] cld_opd_hres = cld_opd.copy() - refl = np.where(np.isnan(refl), 0, refl) - refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct) - nn = SRCNN(LEN_Y=LEN_Y-16, LEN_X=LEN_X-16) - refl = refl[nn.slc_y, nn.slc_x] + refl = np.where(np.isnan(refl), 0, bt) + refl = refl[nn.slc_y_m, nn.slc_x_m] refl = np.expand_dims(refl, axis=0) + refl = nn.upsample(refl) + refl = normalize(refl, 'refl_0_65um_nom', mean_std_dct) bt = np.where(np.isnan(bt), 0, bt) bt = bt[nn.slc_y_m, nn.slc_x_m] @@ -723,7 +723,7 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): # refl_avg = np.squeeze(refl_avg) cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd) - cld_opd = cld_opd[nn.slc_y_2, nn.slc_x_2] + cld_opd = cld_opd[nn.slc_y_m, nn.slc_x_m] cld_opd = np.expand_dims(cld_opd, axis=0) cld_opd = nn.upsample(cld_opd) cld_opd = normalize(cld_opd, label_param, mean_std_dct)