diff --git a/modules/deeplearning/cloud_fraction_fcn_abi.py b/modules/deeplearning/cloud_fraction_fcn_abi.py index 717681f7508a49e7e3e3aecf018450119c4535a7..73593d9be3e2a5de043b2dcc5049d410783855fc 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi.py @@ -778,6 +778,8 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): bt = get_grid_values_all(h5f, 'temp_11_0um_nom') refl = get_grid_values_all(h5f, 'refl_0_65um_nom') + bt = bt[0:2500, :] + refl = refl[0:2500, :] y_len, x_len = bt.shape[0], bt.shape[1] lons = get_grid_values_all(h5f, 'longitude') lats = get_grid_values_all(h5f, 'latitude') @@ -788,15 +790,19 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): # refl_lo = get_grid_values_all(h5f, 'refl_submin_ch01') refl_lo = get_grid_values_all(h5f, 'refl_0_65um_nom_min_sub') + relf_lo = refl_lo[0:2500, :] refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct) # refl_hi = get_grid_values_all(h5f, 'refl_submax_ch01') refl_hi = get_grid_values_all(h5f, 'refl_0_65um_nom_max_sub') + refl_hi = refl_hi[0:2500, :] refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct) # refl_std = get_grid_values_all(h5f, 'refl_substdev_ch01') refl_std = get_grid_values_all(h5f, 'refl_0_65um_nom_stddev_sub') + refl_std = refl_std[0:2500, :] refl_std = np.where(np.isnan(refl_std), 0, refl_std) cp = get_grid_values_all(h5f, label_param) + cp = cp[0:2500, :] cp = np.where(np.isnan(cp), 0, cp) # data = np.stack([bt, refl_lo, refl_hi, refl_std, cp], axis=2)