diff --git a/modules/deeplearning/amv_raob.py b/modules/deeplearning/amv_raob.py
index abc4e7055d68e272db8f4205a41d9cbc3557e2cd..a77da44a47f397be9460b6695d126d548ee72979 100644
--- a/modules/deeplearning/amv_raob.py
+++ b/modules/deeplearning/amv_raob.py
@@ -727,16 +727,15 @@ def get_images(lons, lats, timestamp, channel_list, half_width, step, do_norm=Fa
 
         # Navigation, convert to BT/REFL
         try:
-            pug_c = PugFile(local_path, 'Rad')
             pug_l1b_c = PugL1bTools(local_path)
         except Exception as exc:
             print(exc)
             return None, None, None, None
 
         bt_or_refl = None
-        if pug_c.bt_or_refl == 'bt':
+        if pug_l1b_c.bt_or_refl == 'bt':
             bt_or_refl = pug_l1b_c.bt
-        elif pug_c.bt_or_refl == 'refl':
+        elif pug_l1b_c.bt_or_refl == 'refl':
             bt_or_refl = pug_l1b_c.refl
 
         if TRIPLET or CONV3D:
@@ -748,15 +747,14 @@ def get_images(lons, lats, timestamp, channel_list, half_width, step, do_norm=Fa
 
             # Navigation, convert to BT/REFL
             try:
-                pug_l = PugFile(local_path_l, 'Rad')
                 pug_l1b_l = PugL1bTools(local_path_l)
             except Exception as exc:
                 print(exc)
                 return None, None, None, None
 
-            if pug_l.bt_or_refl == 'bt':
+            if pug_l1b_l.bt_or_refl == 'bt':
                 bt_or_refl_l = pug_l1b_l.bt
-            elif pug_l.bt_or_refl == 'refl':
+            elif pug_l1b_l.bt_or_refl == 'refl':
                 bt_or_refl_l = pug_l1b_l.refl
 
             # copy from archive to local drive
@@ -767,35 +765,34 @@ def get_images(lons, lats, timestamp, channel_list, half_width, step, do_norm=Fa
 
             # Navigation, convert to BT/REFL
             try:
-                pug_r = PugFile(local_path_r, 'Rad')
                 pug_l1b_r = PugL1bTools(local_path_r)
             except Exception as exc:
                 print(exc)
                 return None, None, None, None
 
-            if pug_r.bt_or_refl == 'bt':
+            if pug_l1b_r.bt_or_refl == 'bt':
                 bt_or_refl_r = pug_l1b_r.bt
-            elif pug_r.bt_or_refl == 'refl':
+            elif pug_l1b_r.bt_or_refl == 'refl':
                 bt_or_refl_r = pug_l1b_r.refl
 
         if daynight != 'ANY':
             if step[ch_idx] == 1:
                 if geoloc_2km is None:
-                    geoloc_2km = pug_c.geo
+                    geoloc_2km = pug_l1b_c.geo
                 glons = geoloc_2km.lon
                 glats = geoloc_2km.lat
             elif step[ch_idx] == 4:
                 if geoloc_hkm is None:
-                    geoloc_hkm = pug_c.geo
+                    geoloc_hkm = pug_l1b_c.geo
                 glons = geoloc_hkm.lon
                 glats = geoloc_hkm.lat
             elif step[ch_idx] == 2:
                 if geoloc_1km is None:
-                    geoloc_1km = pug_c.geo
+                    geoloc_1km = pug_l1b_c.geo
                 glons = geoloc_1km.lon
                 glats = geoloc_1km.lat
 
-            alt_fnc = get_solar_alt_func(pug_c, glons, glats, dt_obj)
+            alt_fnc = get_solar_alt_func(pug_l1b_c, glons, glats, dt_obj)
 
         images = []
         images_l = []
@@ -803,7 +800,7 @@ def get_images(lons, lats, timestamp, channel_list, half_width, step, do_norm=Fa
         for idx, lon in enumerate(lons):
             lat = lats[idx]
             if ch_idx == 0:
-                l, c = pug_c.lat_lon_to_l_c(lat, lon)
+                l, c = pug_l1b_c.lat_lon_to_l_c(lat, lon)
                 l_s.append(l)
                 c_s.append(c)
             else:
@@ -824,7 +821,7 @@ def get_images(lons, lats, timestamp, channel_list, half_width, step, do_norm=Fa
             l_b = l + half_width[ch_idx]
             c_a = c - half_width[ch_idx]
             c_b = c + half_width[ch_idx]
-            if (l_a >= 0 and l_b < pug_c.shape[0]) and (c_a >= 0 and c_b < pug_c.shape[1]):
+            if (l_a >= 0 and l_b < pug_l1b_c.shape[0]) and (c_a >= 0 and c_b < pug_l1b_c.shape[1]):
                 img = bt_or_refl[l_a:l_b:step[ch_idx], c_a:c_b:step[ch_idx]]
                 if do_norm:
                     img = prepare_image(img, ch)