diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 4aa56ac4d5a5e932d3cfb0c027bac116b57c8b78..cad29d3a761d0c82fed4444b08be9f7a0636868d 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -411,10 +411,6 @@ class SRCNN: input_2d = self.inputs[0] print('input: ', input_2d.shape) - ##input_2d = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding='VALID', activation=None)(input_2d) - # conv = input_2d - # print('input: ', conv.shape) - print('input: ', input_2d.shape) conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d) print(conv.shape) @@ -439,7 +435,8 @@ class SRCNN: conv = conv + conv_b print(conv.shape) - self.logits = tf.keras.layers.Conv2D(1, kernel_size=3, strides=1, padding=padding, name='regression')(conv) + # This is effectively a Dense layer + self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='regression')(conv) print(self.logits.shape)