diff --git a/modules/deeplearning/cloud_fraction_fcn_viirs.py b/modules/deeplearning/cloud_fraction_fcn_viirs.py
index 9fd35a77a13583c4a96ea3c98e4fc24f9ebbdf8c..3a0d5d55bb9f57424caba804bb4c7cb0c4dae66e 100644
--- a/modules/deeplearning/cloud_fraction_fcn_viirs.py
+++ b/modules/deeplearning/cloud_fraction_fcn_viirs.py
@@ -11,6 +11,8 @@ import h5py
 import xarray as xr
 import gc
 
+AUTOTUNE = tf.data.AUTOTUNE
+
 LOG_DEVICE_PLACEMENT = False
 
 PROC_BATCH_SIZE = 4
@@ -30,7 +32,7 @@ EARLY_STOP = True
 
 NOISE_TRAINING = False
 NOISE_STDDEV = 0.01
-DO_AUGMENT = True
+DO_AUGMENT = False
 
 DO_SMOOTH = False
 SIGMA = 1.0
@@ -319,9 +321,12 @@ class SRCNN:
 
         data_norm = []
         for param in data_params_half:
-            idx = params.index(param)
-            tmp = input_data[:, idx, :, :]
-            tmp = tmp.copy()
+            # If next 2 uncommented, take out get_grid_cell_mean
+            # idx = params.index(param)
+            # tmp = input_data[:, idx, :, :]
+            idx = params_i.index(param)
+            tmp = input_label[:, idx, :, :]
+            tmp = get_grid_cell_mean(tmp)
             tmp = tmp[:, slc_y, slc_x]
             tmp = normalize(tmp, param, mean_std_dct)
             data_norm.append(tmp)
@@ -329,7 +334,6 @@ class SRCNN:
         for param in data_params_full:
             idx = params_i.index(param)
             tmp = input_label[:, idx, :, :]
-            tmp = tmp.copy()
 
             lo, hi, std, avg = get_min_max_std(tmp)
             lo = normalize(lo, param, mean_std_dct)
@@ -340,8 +344,10 @@ class SRCNN:
             data_norm.append(hi[:, slc_y, slc_x])
             data_norm.append(avg[:, slc_y, slc_x])
         # ---------------------------------------------------
-        tmp = input_data[:, label_idx, :, :]
-        tmp = tmp.copy()
+        # If next uncommented, take out get_grid_cell_mean
+        # tmp = input_data[:, label_idx, :, :]
+        tmp = input_label[:, label_idx_i, :, :]
+        tmp = get_grid_cell_mean(tmp)
         tmp = tmp[:, slc_y, slc_x]
         data_norm.append(tmp)
         # ---------
@@ -351,7 +357,6 @@ class SRCNN:
         # -----------------------------------------------------
         # -----------------------------------------------------
         label = input_label[:, label_idx_i, :, :]
-        label = label.copy()
         label = label[:, y_128, x_128]
         if NumClasses == 5:
             label = get_label_data_5cat(label)
@@ -397,11 +402,11 @@ class SRCNN:
 
         dataset = tf.data.Dataset.from_tensor_slices(indexes)
         dataset = dataset.batch(PROC_BATCH_SIZE)
-        dataset = dataset.map(self.data_function, num_parallel_calls=8)
+        dataset = dataset.map(self.data_function, num_parallel_calls=AUTOTUNE)
         dataset = dataset.cache()
         if DO_AUGMENT:
             dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
-        dataset = dataset.prefetch(buffer_size=1)
+        dataset = dataset.prefetch(buffer_size=AUTOTUNE)
         self.train_dataset = dataset
 
     def get_test_dataset(self, indexes):
@@ -409,7 +414,7 @@ class SRCNN:
 
         dataset = tf.data.Dataset.from_tensor_slices(indexes)
         dataset = dataset.batch(PROC_BATCH_SIZE)
-        dataset = dataset.map(self.data_function_test, num_parallel_calls=8)
+        dataset = dataset.map(self.data_function_test, num_parallel_calls=AUTOTUNE)
         dataset = dataset.cache()
         self.test_dataset = dataset