diff --git a/modules/deeplearning/cloud_fraction_fcn.py b/modules/deeplearning/cloud_fraction_fcn.py index 308c4dc6b8ec6c12c1941efc362f20c4956ff333..511ce9532d092d17c78ff9bbe890d53941de2e49 100644 --- a/modules/deeplearning/cloud_fraction_fcn.py +++ b/modules/deeplearning/cloud_fraction_fcn.py @@ -814,16 +814,14 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): lats_out = np.zeros((y_len, x_len), dtype=np.float32) border = int((KERNEL_SIZE - 1)/2) cld_frac_out[border:y_len - border, border:x_len - border] = cld_frac[0, :, :] - lons_out[border:y_len - border, border:x_len - border] = lons[:, :] - lats_out[border:y_len - border, border:x_len - border] = lats[:, :] bt = denormalize(bt, 'temp_11_0um_nom', mean_std_dct) refl_avg = denormalize(refl_avg, 'refl_0_65um_nom', mean_std_dct) if out_file is not None: - np.save(out_file, (cld_frac_out, bt, refl_avg, cp)) + np.save(out_file, (cld_frac_out, bt, refl_avg, cp, lons, lats)) else: - return cld_frac_out, bt, refl_avg, cp + return cld_frac_out, bt, refl_avg, cp, lons, lats def analyze_3cat(file):