diff --git a/modules/icing/pirep_goes.py b/modules/icing/pirep_goes.py index 39e5a34ecd4a74cf0bd448e7b663c611d209b5aa..8c08cd616ef089c0cfb59ba9dc6cd30ca9a515c5 100644 --- a/modules/icing/pirep_goes.py +++ b/modules/icing/pirep_goes.py @@ -2200,6 +2200,7 @@ def run_icing_predict(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=h for fidx, fname in enumerate(clvrx_files): h5f = h5py.File(fname, 'r') dto = clvrx_ds.get_datetime(fname) + ts = dto.timestamp() clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M') data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain) @@ -2255,7 +2256,8 @@ def run_icing_predict(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=h preds_day_dct, probs_day_dct = run_evaluate_static(day_grd_dct, num_day_tiles, day_night='DAY', ckpt_dir_s_path=day_model_path, prob_thresh=prob_thresh, - use_flight_altitude=use_flight_altitude) + use_flight_altitude=use_flight_altitude, + flight_levels=flight_levels) day_idxs = np.array(day_idxs) for flvl in flight_levels: day_preds = preds_day_dct[flvl] @@ -2277,7 +2279,8 @@ def run_icing_predict(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=h preds_nght_dct, probs_nght_dct = run_evaluate_static(nght_grd_dct, num_nght_tiles, day_night='NIGHT', ckpt_dir_s_path=night_model_path, prob_thresh=prob_thresh, - use_flight_altitude=use_flight_altitude) + use_flight_altitude=use_flight_altitude, + flight_levels=flight_levels) nght_idxs = np.array(nght_idxs) for flvl in flight_levels: nght_preds = preds_nght_dct[flvl] @@ -2298,3 +2301,162 @@ def run_icing_predict(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=h print('Done: ', clvrx_str_time) h5f.close() + + +def run_icing_predict_image(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir, + day_model_path=model_path_day, night_model_path=model_path_night, + prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO', + l1b_andor_l2='BOTH', use_flight_altitude=True, + extent=[-105, -70, 15, 50], + pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv', + obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None): + + flight_levels = [0, 1, 2, 3, 4] + + if pirep_file is not None: + ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file) + + alt_lo, alt_hi = 0.0, 15000.0 + if flight_level is not None: + alt_lo, alt_hi = flt_level_ranges[flight_level] + + day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2) + nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2) + + if day_night == 'AUTO': + train_params = list(set(day_train_params + nght_train_params)) + elif day_night == 'DAY': + train_params = day_train_params + elif day_night == 'NIGHT': + train_params = nght_train_params + + if satellite == 'H08': + clvrx_ds = CLAVRx_H08(clvrx_dir) + else: + clvrx_ds = CLAVRx(clvrx_dir) + clvrx_files = clvrx_ds.flist + + for fidx, fname in enumerate(clvrx_files): + h5f = h5py.File(fname, 'r') + dto = clvrx_ds.get_datetime(fname) + ts = dto.timestamp() + clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M') + + data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain) + + if fidx == 0: + num_elems = len(cc) + num_lines = len(ll) + nav = get_navigation(satellite, domain) + lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc, offset=8) + + ancil_data_dct, _, _ = make_for_full_domain_predict(h5f, name_list= + ['solar_zenith_angle', 'sensor_zenith_angle', 'cld_height_acha', 'cld_geo_thick'], + satellite=satellite, domain=domain) + + satzen = ancil_data_dct['sensor_zenith_angle'] + solzen = ancil_data_dct['solar_zenith_angle'] + day_idxs = [] + nght_idxs = [] + for j in range(num_lines): + for i in range(num_elems): + k = i + j*num_elems + if not check_oblique(satzen[k]): + continue + if is_day(solzen[k]): + day_idxs.append(k) + else: + nght_idxs.append(k) + + num_tiles = num_lines * num_elems + num_day_tiles = len(day_idxs) + num_nght_tiles = len(nght_idxs) + + # initialize output arrays + probs_2d_dct = {flvl: None for flvl in flight_levels} + preds_2d_dct = {flvl: None for flvl in flight_levels} + for flvl in flight_levels: + fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8) + fd_preds[:] = -1 + fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32) + fd_probs[:] = -1.0 + preds_2d_dct[flvl] = fd_preds + probs_2d_dct[flvl] = fd_probs + + if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0: + + day_data_dct = {name: [] for name in day_train_params} + for name in day_train_params: + for k in day_idxs: + day_data_dct[name].append(data_dct[name][k]) + day_grd_dct = {name: None for name in day_train_params} + for ds_name in day_train_params: + day_grd_dct[ds_name] = np.stack(day_data_dct[ds_name]) + + preds_day_dct, probs_day_dct = run_evaluate_static(day_grd_dct, num_day_tiles, day_night='DAY', + ckpt_dir_s_path=day_model_path, prob_thresh=prob_thresh, + use_flight_altitude=use_flight_altitude, + flight_levels=flight_levels) + day_idxs = np.array(day_idxs) + for flvl in flight_levels: + day_preds = preds_day_dct[flvl] + day_probs = probs_day_dct[flvl] + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + fd_preds[day_idxs] = day_preds[:] + fd_probs[day_idxs] = day_probs[:] + + if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0: + + nght_data_dct = {name: [] for name in nght_train_params} + for name in nght_train_params: + for k in nght_idxs: + nght_data_dct[name].append(data_dct[name][k]) + nght_grd_dct = {name: None for name in nght_train_params} + for ds_name in nght_train_params: + nght_grd_dct[ds_name] = np.stack(nght_data_dct[ds_name]) + + preds_nght_dct, probs_nght_dct = run_evaluate_static(nght_grd_dct, num_nght_tiles, day_night='NIGHT', + ckpt_dir_s_path=night_model_path, prob_thresh=prob_thresh, + use_flight_altitude=use_flight_altitude, + flight_levels=flight_levels) + nght_idxs = np.array(nght_idxs) + for flvl in flight_levels: + nght_preds = preds_nght_dct[flvl] + nght_probs = probs_nght_dct[flvl] + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + fd_preds[nght_idxs] = nght_preds[:] + fd_probs[nght_idxs] = nght_probs[:] + + for flvl in flight_levels: + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems)) + probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems)) + + # write_icing_file_nc4(clvrx_str_time, output_dir, preds_2d_dct, probs_2d_dct, + # x_rad, y_rad, lons_2d, lats_2d, cc, ll, satellite=satellite, domain=domain) + + dto, _ = get_time_tuple_utc(ts) + dto_0 = dto - datetime.timedelta(minutes=30) + dto_1 = dto + datetime.timedelta(minutes=30) + ts_0 = dto_0.timestamp() + ts_1 = dto_1.timestamp() + + if pirep_file is not None: + _, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi) + elif obs_times is not None: + keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1) + keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False) + keep_lons = obs_lons[keep] + keep_lats = obs_lats[keep] + else: + keep_lons = None + keep_lats = None + + make_icing_image(None, probs_2d_dct[0], None, None, clvrx_str_time, satellite, domain, + ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent) + + print('Done: ', clvrx_str_time) + h5f.close() \ No newline at end of file