diff --git a/modules/deeplearning/cnn_cld_frac.py b/modules/deeplearning/cnn_cld_frac.py index 2e78ba0e21fdd42940659af47ad3a3af63d2e3d6..9f922b61f3b2c6cb21bab8272e6daec4c46324a7 100644 --- a/modules/deeplearning/cnn_cld_frac.py +++ b/modules/deeplearning/cnn_cld_frac.py @@ -86,8 +86,10 @@ if KERNEL_SIZE == 3: s = np.arange(0, int((N*128)/2) + 3, 0.5) x_k = slice(1, N*128 + 3) y_k = slice(1, N*128 + 3) - x_128 = slice(3, N*128 + 3) - y_128 = slice(3, N*128 + 3) + #x_128 = slice(3, N*128 + 3) + #y_128 = slice(3, N*128 + 3) + x_128 = slice(2, N*128 + 2) + y_128 = slice(2, N*128 + 2) elif KERNEL_SIZE == 5: slc_x = slice(3, 135) slc_y = slice(3, 135) @@ -201,6 +203,22 @@ def get_grid_cell_mean(grd_k): return s +def get_min_max_std(grd_k): + a = grd_k[:, 0::2, 0::2] + b = grd_k[:, 1::2, 0::2] + c = grd_k[:, 0::2, 1::2] + d = grd_k[:, 1::2, 1::2] + + lo = np.nanmin([a[:, ], b[:, ], c[:, ], d[:, ]]) + hi = np.nanmax([a[:, ], b[:, ], c[:, ], d[:, ]]) + std = np.nanstd([a[:, ], b[:, ], c[:, ], d[:, ]]) + + lo = np.where(np.isnan(lo), lo) + hi = np.where(np.isnan(hi), hi) + std = np.where(np.isnan(std), std) + + return lo, hi, std + # def get_label_data(grd_k): # grd_k = np.where(np.isnan(grd_k), 0, grd_k) #