diff --git a/modules/deeplearning/icing.py b/modules/deeplearning/icing.py index ee2e13ed70e83d0d39cb44ead6a594175c69fba1..ebe77b82980cbde813bf1df310090b3c875e450a 100644 --- a/modules/deeplearning/icing.py +++ b/modules/deeplearning/icing.py @@ -4,14 +4,12 @@ import subprocess import os, datetime import numpy as np -import xarray as xr import pickle import h5py from deeplearning.amv_raob import get_bounding_gfs_files, convert_file, get_images, get_interpolated_profile, get_time_tuple_utc, get_profile -from icing.pirep_goes import split_data -from icing.pirep_goes import train_params_day +from icing.pirep_goes import split_data, normalize LOG_DEVICE_PLACEMENT = False @@ -49,8 +47,10 @@ img_width = 16 #img_width = 12 #img_width = 6 -NUM_VERT_LEVELS = 26 -NUM_VERT_PARAMS = 2 + +train_params_day = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha', + 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp'] + #'cloud_phase'] def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True): @@ -116,6 +116,7 @@ class IcingIntensityNN: self.in_mem_batch = None self.filename = None self.h5f = None + self.h5f_l1b = None self.logits = None @@ -164,7 +165,7 @@ class IcingIntensityNN: n_chans *= 3 self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans)) #self.X_img = tf.keras.Input(shape=NUM_PARAMS) - self.X_prof = tf.keras.Input(shape=(NUM_VERT_LEVELS, NUM_VERT_PARAMS)) + #self.X_prof = tf.keras.Input(shape=(NUM_VERT_LEVELS, NUM_VERT_PARAMS)) self.X_sfc = tf.keras.Input(shape=2) self.inputs.append(self.X_img) @@ -201,7 +202,7 @@ class IcingIntensityNN: data = [] for param in train_params_day: nda = self.h5f[param][nd_keys, ] - # nda = do_normalize(nda) + # nda = normalize(nda, param) data.append(nda) data = np.stack(data) data = data.astype(np.float32) @@ -224,7 +225,6 @@ class IcingIntensityNN: # label.append(tup[2]) # continue # - # # if CACHE_DATA_IN_MEM: # self.in_mem_data_cache[key] = (nda, ndb, ndc) @@ -576,7 +576,7 @@ class IcingIntensityNN: self.predict(mini_batch_test) print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result()) - def run(self, filename, train_dict=None, valid_dict=None): + def run(self, filename, filename_l1b=None, train_dict=None, valid_dict=None): with tf.device('/device:GPU:'+str(self.gpu_device)): self.setup_pipeline(filename, train_idxs=train_dict, test_idxs=valid_dict) self.build_model()