diff --git a/modules/deeplearning/srcnn_cld_frac.py b/modules/deeplearning/srcnn_cld_frac.py index 22df441432c9cc8810e7c458b9883928cc2d7794..88313c326c5658e1036fce7b525b114e843e0dae 100644 --- a/modules/deeplearning/srcnn_cld_frac.py +++ b/modules/deeplearning/srcnn_cld_frac.py @@ -148,6 +148,12 @@ def build_residual_block_conv2d_down2x(x_in, num_filters, activation, padding='S if do_batch_norm: conv = tf.keras.layers.BatchNormalization()(conv) + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) + if do_drop_out: + conv = tf.keras.layers.Dropout(drop_rate)(conv) + if do_batch_norm: + conv = tf.keras.layers.BatchNormalization()(conv) + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) if do_drop_out: @@ -501,7 +507,7 @@ class SRCNN: conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) - # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) # conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale)