diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 3457cfa32daa42e3b20c5b01af0c85706e8c81dd..22e043e0a69d8161186825b973fdbdfc932ce67e 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -65,6 +65,8 @@ x_134 = np.arange(134) y_134 = np.arange(134) x_64 = np.arange(64) y_64 = np.arange(64) +x_67 = np.arange(67) +y_67 = np.arange(67) # x_134_2 = slice(3, 131, 2) # y_134_2 = slice(3, 131, 2) @@ -88,6 +90,8 @@ y_134_2 = slice(1, 134, 2) # slc_y = y_128 # t = np.arange(0, 64, 0.5) # s = np.arange(0, 64, 0.5) +# x_2 = x_64 +# y_2 = y_64 slc_x_2 = x_134_2 slc_y_2 = y_134_2 @@ -95,6 +99,8 @@ slc_x = x_128 slc_y = y_128 t = np.arange(1, 66, 0.5) s = np.arange(1, 66, 0.5) +x_2 = x_67 +y_2 = y_67 def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', @@ -251,14 +257,14 @@ class SRCNN: idx = params.index(param) tmp = input_data[:, idx, slc_y_2, slc_x_2] tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) - tmp = resample_2d_linear(x_64, y_64, tmp, t, s) + tmp = resample_2d_linear(x_2, y_2, tmp, t, s) data_norm.append(tmp) # -------------------------- param = 'refl_0_65um_nom' idx = params.index(param) tmp = input_data[:, idx, slc_y_2, slc_x_2] tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) - tmp = resample_2d_linear(x_64, y_64, tmp, t, s) + tmp = resample_2d_linear(x_2, y_2, tmp, t, s) data_norm.append(tmp) # -------- tmp = input_data[:, label_idx, slc_y_2, slc_x_2] @@ -266,7 +272,7 @@ class SRCNN: tmp = normalize(tmp, label_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) else: tmp = np.where(np.isnan(tmp), 0, tmp) - tmp = resample_2d_linear(x_64, y_64, tmp, t, s) + tmp = resample_2d_linear(x_2, y_2, tmp, t, s) data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3)