From 6d7b2a097cfba775ee7c3d1b6f543f902f83d841 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Tue, 21 Mar 2023 15:15:05 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/cloud_fraction_fcn.py | 20 ++++++++++++-------- 1 file changed, 12 insertions(+), 8 deletions(-) diff --git a/modules/deeplearning/cloud_fraction_fcn.py b/modules/deeplearning/cloud_fraction_fcn.py index 98b7d892..1693c6f5 100644 --- a/modules/deeplearning/cloud_fraction_fcn.py +++ b/modules/deeplearning/cloud_fraction_fcn.py @@ -783,26 +783,30 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): grd_a = get_grid_values_all(h5f, 'orig/temp_11_0um') grd_a = np.where(np.isnan(grd_a), 0, grd_a) - grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] + # grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) - grd_a = grd_a[slc_y, slc_x] + #grd_a = grd_a[slc_y, slc_x] + grd_a = grd_a[2:3230, 2:1098] grd_b = get_grid_values_all(h5f, 'super/refl_0_65um') grd_b = np.where(np.isnan(grd_b), 0, grd_b) - grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] + #grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] grd_b = np.expand_dims(grd_b, axis=0) lo, hi, std, avg = get_min_max_std(grd_b) lo = normalize(lo, 'refl_0_65um_nom', mean_std_dct) hi = normalize(hi, 'refl_0_65um_nom', mean_std_dct) avg = normalize(avg, 'refl_0_65um_nom', mean_std_dct) - lo = lo[0, slc_y, slc_x] - hi = hi[0, slc_y, slc_x] - avg = avg[0, slc_y, slc_x] + #lo = lo[0, slc_y, slc_x] + #hi = hi[0, slc_y, slc_x] + #avg = avg[0, slc_y, slc_x] + lo = lo[0, 2:3230, 2:1098] + hi = hi[0, 2:3230, 2:1098] + avg = avg[0, 2:3230, 2:1098] grd_c = get_grid_values_all(h5f, 'orig/'+label_param) grd_c = np.where(np.isnan(grd_c), 0, grd_c) - grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x] - grd_c = grd_c[slc_y, slc_x] + #grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x] + grd_c = grd_c[2:3230, 2:1098] data = np.stack([grd_a, lo, hi, avg, grd_c], axis=2) data = np.expand_dims(data, axis=0) -- GitLab