Skip to content
Snippets Groups Projects
Commit 6bbbecdf authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 82070dd5
No related branches found
No related tags found
No related merge requests found
import glob
import tensorflow as tf
from util.setup import logdir, modeldir, cachepath, now, ancillary_path
from util.util import EarlyStop, normalize, denormalize, resample, resample_2d_linear, resample_one, resample_2d_linear_one, get_grid_values_all
import os, datetime
import numpy as np
import pickle
import h5py
# L1B M/I-bands: /apollo/cloud/scratch/cwhite/VIIRS_HRES/2019/2019_01_01/
# CLAVRx: /apollo/cloud/scratch/Satellite_Output/VIIRS_HRES/2019/2019_01_01/
# /apollo/cloud/scratch/Satellite_Output/andi/NEW/VIIRS_HRES/2019
LOG_DEVICE_PLACEMENT = False
PROC_BATCH_SIZE = 2
PROC_BATCH_BUFFER_SIZE = 50000
NumClasses = 5
if NumClasses == 2:
NumLogits = 1
else:
NumLogits = NumClasses
BATCH_SIZE = 128
NUM_EPOCHS = 60
TRACK_MOVING_AVERAGE = False
EARLY_STOP = True
NOISE_TRAINING = True
NOISE_STDDEV = 0.01
DO_AUGMENT = True
DO_ZERO_OUT = False
# setup scaling parameters dictionary
mean_std_dct = {}
mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l2 = pickle.load(f)
f.close()
mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l1b = pickle.load(f)
f.close()
mean_std_dct.update(mean_std_dct_l1b)
mean_std_dct.update(mean_std_dct_l2)
# label_param = 'cloud_fraction'
# label_param = 'cld_opd_dcomp'
label_param = 'cloud_probability'
params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', label_param]
data_params = ['temp_11_0um_nom']
label_idx = params.index(label_param)
print('data_params: ', data_params)
print('label_param: ', label_param)
x_134 = np.arange(134)
y_134 = np.arange(134)
x_64 = np.arange(64)
y_64 = np.arange(64)
x_134_2 = x_134[3:131:2]
y_134_2 = y_134[3:131:2]
t = np.arange(0, 64, 0.5)
s = np.arange(0, 64, 0.5)
x_128_2 = x_134[3:131:2]
y_128_2 = y_134[3:131:2]
x_128 = x_134[3:131]
y_128 = y_134[3:131]
#----------- New
# x_134_2 = x_134[1:134:2]
# t = np.arange(1, 66, 0.5)
#--------------------------
def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME',
kernel_initializer='he_uniform', scale=None,
do_drop_out=True, drop_rate=0.5, do_batch_norm=False):
with tf.name_scope(block_name):
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv)
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding, activation=None)(skip)
if scale is not None:
skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip)
if do_drop_out:
skip = tf.keras.layers.Dropout(drop_rate)(skip)
if do_batch_norm:
skip = tf.keras.layers.BatchNormalization()(skip)
conv = conv + skip
print(block_name+':', conv.shape)
return conv
class CNN:
def __init__(self):
self.train_data = None
self.train_label = None
self.test_data = None
self.test_label = None
self.test_data_denorm = None
self.train_dataset = None
self.inner_train_dataset = None
self.test_dataset = None
self.eval_dataset = None
self.X_img = None
self.X_prof = None
self.X_u = None
self.X_v = None
self.X_sfc = None
self.inputs = []
self.y = None
self.handle = None
self.inner_handle = None
self.in_mem_batch = None
self.h5f_l1b_trn = None
self.h5f_l1b_tst = None
self.h5f_l2_trn = None
self.h5f_l2_tst = None
self.logits = None
self.predict_data = None
self.predict_dataset = None
self.mean_list = None
self.std_list = None
self.training_op = None
self.correct = None
self.accuracy = None
self.loss = None
self.pred_class = None
self.variable_averages = None
self.global_step = None
self.writer_train = None
self.writer_valid = None
self.writer_train_valid_loss = None
self.OUT_OF_RANGE = False
self.abi = None
self.temp = None
self.wv = None
self.lbfp = None
self.sfc = None
self.in_mem_data_cache = {}
self.in_mem_data_cache_test = {}
self.model = None
self.optimizer = None
self.ema = None
self.train_loss = None
self.train_accuracy = None
self.test_loss = None
self.test_accuracy = None
self.test_auc = None
self.test_recall = None
self.test_precision = None
self.test_confusion_matrix = None
self.test_true_pos = None
self.test_true_neg = None
self.test_false_pos = None
self.test_false_neg = None
self.test_labels = []
self.test_preds = []
self.test_probs = None
self.learningRateSchedule = None
self.num_data_samples = None
self.initial_learning_rate = None
self.data_dct = None
self.train_data_files = None
self.train_label_files = None
self.test_data_files = None
self.test_label_files = None
self.train_data_nda = None
self.train_label_nda = None
self.test_data_nda = None
self.test_label_nda = None
self.n_chans = len(data_params) + 2
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
# self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans))
# self.X_img = tf.keras.Input(shape=(34, 34, self.n_chans))
# self.X_img = tf.keras.Input(shape=(66, 66, self.n_chans))
self.inputs.append(self.X_img)
tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
def get_in_mem_data_batch(self, idxs, is_training):
if is_training:
files = self.train_data_files
else:
files = self.test_data_files
data_s = []
for k in idxs:
f = files[k]
nda = np.load(f)
data_s.append(nda)
input_data = np.concatenate(data_s)
add_noise = None
noise_scale = None
if is_training and NOISE_TRAINING:
add_noise = True
noise_scale = NOISE_STDDEV
data_norm = []
for param in data_params:
idx = params.index(param)
tmp = input_data[:, idx, y_128_2, x_128_2]
tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
tmp = resample_2d_linear(x_64, y_64, tmp, t, s)
data_norm.append(tmp)
# --------------------------
param = 'refl_0_65um_nom'
idx = params.index(param)
tmp = input_data[:, idx, y_128_2, x_128_2]
tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
tmp = resample_2d_linear(x_64, y_64, tmp, t, s)
data_norm.append(tmp)
# --------
tmp = input_data[:, label_idx, y_128_2, x_128_2]
if label_param != 'cloud_fraction':
tmp = normalize(tmp, label_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
else:
tmp = np.where(np.isnan(tmp), 0, tmp)
tmp = resample_2d_linear(x_64, y_64, tmp, t, s)
data_norm.append(tmp)
# ---------
data = np.stack(data_norm, axis=3)
data = data.astype(np.float32)
# -----------------------------------------------------
# -----------------------------------------------------
label = input_data[:, label_idx, y_128, x_128]
label = self.get_label_data(label)
label = np.expand_dims(label, axis=3)
data = data.astype(np.float32)
label = label.astype(np.int32)
if is_training and DO_AUGMENT:
data_ud = np.flip(data, axis=1)
label_ud = np.flip(label, axis=1)
data_lr = np.flip(data, axis=2)
label_lr = np.flip(label, axis=2)
data = np.concatenate([data, data_ud, data_lr])
label = np.concatenate([label, label_ud, label_lr])
return data, label
def get_label_data(self, grd_k):
num, leny, lenx = grd_k.shape
grd_down_2x = np.zeros((num, leny, lenx))
for t in range(len(num)):
for j in range(int(leny / 2)):
for i in range(int(lenx / 2)):
cell = grd_k[t, j:j + 2, i:i + 2]
if np.sum(np.isnan(cell)) == 0:
cnt = np.sum(cell[t, :, ] == 1.0)
if cnt == 0:
grd_down_2x[t, j, i] = 1
elif cnt == 1:
grd_down_2x[t, j, i] = 2
elif cnt == 2:
grd_down_2x[t, j, i] = 3
elif cnt == 3:
grd_down_2x[t, j, i] = 4
elif cnt == 4:
grd_down_2x[t, j, i] = 5
pass
else:
grd_down_2x[t, j, i] = 0
return grd_down_2x
def get_in_mem_data_batch_train(self, idxs):
return self.get_in_mem_data_batch(idxs, True)
def get_in_mem_data_batch_test(self, idxs):
return self.get_in_mem_data_batch(idxs, False)
def get_in_mem_data_batch_eval(self, idxs):
data = []
for param in self.train_params:
nda = self.data_dct[param]
nda = normalize(nda, param, mean_std_dct)
data.append(nda)
data = np.stack(data)
data = data.astype(np.float32)
data = np.transpose(data, axes=(1, 2, 0))
data = np.expand_dims(data, axis=0)
return data
@tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
def data_function(self, indexes):
out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32])
return out
@tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
def data_function_test(self, indexes):
out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32])
return out
@tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
def data_function_evaluate(self, indexes):
# TODO: modify for user specified altitude
out = tf.numpy_function(self.get_in_mem_data_batch_eval, [indexes], [tf.float32])
return out
def get_train_dataset(self, indexes):
indexes = list(indexes)
dataset = tf.data.Dataset.from_tensor_slices(indexes)
dataset = dataset.batch(PROC_BATCH_SIZE)
dataset = dataset.map(self.data_function, num_parallel_calls=8)
dataset = dataset.cache()
if DO_AUGMENT:
dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
dataset = dataset.prefetch(buffer_size=1)
self.train_dataset = dataset
def get_test_dataset(self, indexes):
indexes = list(indexes)
dataset = tf.data.Dataset.from_tensor_slices(indexes)
dataset = dataset.batch(PROC_BATCH_SIZE)
dataset = dataset.map(self.data_function_test, num_parallel_calls=8)
dataset = dataset.cache()
self.test_dataset = dataset
def get_evaluate_dataset(self, indexes):
indexes = list(indexes)
dataset = tf.data.Dataset.from_tensor_slices(indexes)
dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8)
self.eval_dataset = dataset
def setup_pipeline(self, train_data_files, test_data_files, num_train_samples):
self.train_data_files = train_data_files
self.test_data_files = test_data_files
trn_idxs = np.arange(len(train_data_files))
np.random.shuffle(trn_idxs)
tst_idxs = np.arange(len(test_data_files))
self.get_train_dataset(trn_idxs)
self.get_test_dataset(tst_idxs)
self.num_data_samples = num_train_samples # approximately
print('datetime: ', now)
print('training and test data: ')
print('---------------------------')
print('num train samples: ', self.num_data_samples)
print('BATCH SIZE: ', BATCH_SIZE)
print('num test samples: ', tst_idxs.shape[0])
print('setup_pipeline: Done')
def setup_test_pipeline(self, test_data_files):
self.test_data_files = test_data_files
tst_idxs = np.arange(len(test_data_files))
self.get_test_dataset(tst_idxs)
print('setup_test_pipeline: Done')
def setup_eval_pipeline(self, filename):
idxs = [0]
self.num_data_samples = idxs.shape[0]
self.get_evaluate_dataset(idxs)
def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2):
print('build_cnn')
padding = "SAME"
# activation = tf.nn.relu
# activation = tf.nn.elu
activation = tf.nn.relu
momentum = 0.99
num_filters = 64
input_2d = self.inputs[0]
print('input: ', input_2d.shape)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d)
conv = input_2d
print('input: ', conv.shape)
conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, kernel_initializer='he_uniform', activation=activation, padding='SAME')(input_2d)
print(conv.shape)
if NOISE_TRAINING:
conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)
scale = 0.2
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', scale=scale)
# conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', scale=scale)
# conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', scale=scale)
conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, kernel_initializer='he_uniform', padding=padding)(conv_b)
conv = conv + conv_b
print(conv.shape)
self.logits = tf.keras.layers.Conv2D(1, kernel_size=3, strides=1, padding=padding, name='regression')(conv)
print(self.logits.shape)
def build_training(self):
if NumClasses == 2:
self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only
else:
self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class
# self.loss = tf.keras.losses.MeanAbsoluteError() # Regression
# self.loss = tf.keras.losses.MeanSquaredError() # Regression
# decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
initial_learning_rate = 0.002
decay_rate = 0.95
steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch
decay_steps = int(steps_per_epoch)
print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)
self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)
optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)
if TRACK_MOVING_AVERAGE:
# Not really sure this works properly (from tfa)
# optimizer = tfa.optimizers.MovingAverage(optimizer)
self.ema = tf.train.ExponentialMovingAverage(decay=0.9999)
self.optimizer = optimizer
self.initial_learning_rate = initial_learning_rate
def build_evaluation(self):
self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
self.train_loss = tf.keras.metrics.Mean(name='train_loss')
self.test_loss = tf.keras.metrics.Mean(name='test_loss')
@tf.function
def train_step(self, mini_batch):
inputs = [mini_batch[0]]
labels = mini_batch[1]
with tf.GradientTape() as tape:
pred = self.model(inputs, training=True)
loss = self.loss(labels, pred)
total_loss = loss
if len(self.model.losses) > 0:
reg_loss = tf.math.add_n(self.model.losses)
total_loss = loss + reg_loss
gradients = tape.gradient(total_loss, self.model.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
if TRACK_MOVING_AVERAGE:
self.ema.apply(self.model.trainable_variables)
self.train_loss(loss)
self.train_accuracy(labels, pred)
return loss
@tf.function
def test_step(self, mini_batch):
inputs = [mini_batch[0]]
labels = mini_batch[1]
pred = self.model(inputs, training=False)
t_loss = self.loss(labels, pred)
self.test_loss(t_loss)
self.test_accuracy(labels, pred)
def predict(self, mini_batch):
inputs = [mini_batch[0]]
labels = mini_batch[1]
pred = self.model(inputs, training=False)
t_loss = self.loss(labels, pred)
self.test_labels.append(labels)
self.test_preds.append(pred.numpy())
self.test_loss(t_loss)
self.test_accuracy(labels, pred)
def reset_test_metrics(self):
self.test_loss.reset_states()
self.test_accuracy.reset_states()
def get_metrics(self):
recall = self.test_recall.result()
precsn = self.test_precision.result()
f1 = 2 * (precsn * recall) / (precsn + recall)
tn = self.test_true_neg.result()
tp = self.test_true_pos.result()
fn = self.test_false_neg.result()
fp = self.test_false_pos.result()
mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
return f1, mcc
def do_training(self, ckpt_dir=None):
if ckpt_dir is None:
if not os.path.exists(modeldir):
os.mkdir(modeldir)
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
else:
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
ckpt.restore(ckpt_manager.latest_checkpoint)
self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss'))
step = 0
total_time = 0
best_test_loss = np.finfo(dtype=np.float).max
if EARLY_STOP:
es = EarlyStop()
for epoch in range(NUM_EPOCHS):
self.train_loss.reset_states()
self.train_accuracy.reset_states()
t0 = datetime.datetime.now().timestamp()
proc_batch_cnt = 0
n_samples = 0
for data, label in self.train_dataset:
trn_ds = tf.data.Dataset.from_tensor_slices((data, label))
trn_ds = trn_ds.batch(BATCH_SIZE)
for mini_batch in trn_ds:
if self.learningRateSchedule is not None:
loss = self.train_step(mini_batch)
if (step % 100) == 0:
with self.writer_train.as_default():
tf.summary.scalar('loss_trn', loss.numpy(), step=step)
tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step)
tf.summary.scalar('num_train_steps', step, step=step)
tf.summary.scalar('num_epochs', epoch, step=step)
self.reset_test_metrics()
for data_tst, label_tst in self.test_dataset:
tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst))
tst_ds = tst_ds.batch(BATCH_SIZE)
for mini_batch_test in tst_ds:
self.test_step(mini_batch_test)
with self.writer_valid.as_default():
tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
with self.writer_train_valid_loss.as_default():
tf.summary.scalar('loss_trn', loss.numpy(), step=step)
tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
self.optimizer._decayed_lr('float32').numpy())
step += 1
print('train loss: ', loss.numpy())
proc_batch_cnt += 1
n_samples += data.shape[0]
print('proc_batch_cnt: ', proc_batch_cnt, n_samples)
t1 = datetime.datetime.now().timestamp()
print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
total_time += (t1-t0)
self.reset_test_metrics()
for data, label in self.test_dataset:
ds = tf.data.Dataset.from_tensor_slices((data, label))
ds = ds.batch(BATCH_SIZE)
for mini_batch in ds:
self.test_step(mini_batch)
print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
print('------------------------------------------------------')
tst_loss = self.test_loss.result().numpy()
if tst_loss < best_test_loss:
best_test_loss = tst_loss
ckpt_manager.save()
if EARLY_STOP and es.check_stop(tst_loss):
break
print('total time: ', total_time)
self.writer_train.close()
self.writer_valid.close()
self.writer_train_valid_loss.close()
# f = open(home_dir+'/best_stats_'+now+'.pkl', 'wb')
# pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f)
# f.close()
def build_model(self):
self.build_srcnn()
self.model = tf.keras.Model(self.inputs, self.logits)
def restore(self, ckpt_dir):
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
ckpt.restore(ckpt_manager.latest_checkpoint)
self.reset_test_metrics()
for data, label in self.test_dataset:
ds = tf.data.Dataset.from_tensor_slices((data, label))
ds = ds.batch(BATCH_SIZE)
for mini_batch_test in ds:
self.predict(mini_batch_test)
print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
def do_evaluate(self, data, ckpt_dir):
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
ckpt.restore(ckpt_manager.latest_checkpoint)
self.reset_test_metrics()
pred = self.model([data], training=False)
self.test_probs = pred
pred = pred.numpy()
return pred
def run(self, directory, ckpt_dir=None, num_data_samples=50000):
train_data_files = glob.glob(directory+'data_train_*.npy')
valid_data_files = glob.glob(directory+'data_valid_*.npy')
train_data_files = train_data_files[::2]
valid_data_files = valid_data_files[::2]
self.setup_pipeline(train_data_files, valid_data_files, num_data_samples)
self.build_model()
self.build_training()
self.build_evaluation()
self.do_training(ckpt_dir=ckpt_dir)
def run_restore(self, directory, ckpt_dir):
valid_data_files = glob.glob(directory + 'data_*.npy')
self.num_data_samples = 1000
self.setup_test_pipeline(valid_data_files)
self.build_model()
self.build_training()
self.build_evaluation()
self.restore(ckpt_dir)
def run_evaluate(self, data, ckpt_dir):
self.num_data_samples = 80000
self.build_model()
self.build_training()
self.build_evaluation()
return self.do_evaluate(data, ckpt_dir)
def run_restore_static(directory, ckpt_dir):
nn = CNN()
nn.run_restore(directory, ckpt_dir)
def run_evaluate_static(in_file, out_file, ckpt_dir):
h5f = h5py.File(in_file, 'r')
grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom')
grd_a = grd_a[2432:4032, 2432:4032]
grd_a = grd_a[::2, ::2]
grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
grd_b = grd_b[2432:4032, 2432:4032]
grd_c = get_grid_values_all(h5f, label_param)
grd_c = grd_c[2432:4032, 2432:4032]
grd_c = grd_c[::2, ::2]
leny, lenx = grd_a.shape
x = np.arange(lenx)
y = np.arange(leny)
x_up = np.arange(0, lenx, 0.5)
y_up = np.arange(0, leny, 0.5)
grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)
grd_a = resample_2d_linear_one(x, y, grd_a, x_up, y_up)
grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)
if label_param == 'cloud_fraction':
grd_c = np.where(np.isnan(grd_c), 0, grd_c)
else:
grd_c = normalize(grd_c, label_param, mean_std_dct)
grd_c = resample_2d_linear_one(x, y, grd_c, x_up, y_up)
data = np.stack([grd_a, grd_b, grd_c], axis=2)
data = np.expand_dims(data, axis=0)
nn = CNN()
out_sr = nn.run_evaluate(data, ckpt_dir)
if label_param != 'cloud_fraction':
out_sr = denormalize(out_sr, label_param, mean_std_dct)
if out_file is not None:
np.save(out_file, out_sr)
else:
return out_sr
def run_evaluate_static_2(in_file, out_file, ckpt_dir):
nda = np.load(in_file)
grd_a = nda[:, 0, :, :]
grd_a = grd_a[:, 3:131:2, 3:131:2]
grd_b = nda[:, 2, 3:131, 3:131]
grd_c = nda[:, 3, :, :]
grd_c = grd_c[:, 3:131:2, 3:131:2]
num, leny, lenx = grd_a.shape
x = np.arange(lenx)
y = np.arange(leny)
x_up = np.arange(0, lenx, 0.5)
y_up = np.arange(0, leny, 0.5)
grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)
grd_a = resample_2d_linear(x, y, grd_a, x_up, y_up)
grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)
if label_param == 'cloud_fraction':
grd_c = np.where(np.isnan(grd_c), 0, grd_c)
else:
grd_c = normalize(grd_c, label_param, mean_std_dct)
grd_c = resample_2d_linear(x, y, grd_c, x_up, y_up)
data = np.stack([grd_a, grd_b, grd_c], axis=3)
print(data.shape)
nn = CNN()
out_sr = nn.run_evaluate(data, ckpt_dir)
if label_param != 'cloud_fraction':
# out_sr = denormalize(out_sr, label_param, mean_std_dct)
pass
if out_file is not None:
np.save(out_file, out_sr)
else:
return out_sr
def analyze(fpath='/Users/tomrink/clavrx_snpp_viirs.A2019080.0100.001.2019080064252.uwssec_B00038315.level2.h5', param='cloud_fraction'):
h5f = h5py.File(fpath, 'r')
grd = get_grid_values_all(h5f, param)
grd = np.where(np.isnan(grd), 0, grd)
bt = get_grid_values_all(h5f, 'temp_11_0um_nom')
refl = get_grid_values_all(h5f, 'refl_0_65um_nom')
grd = grd[2432:4032, 2432:4032]
bt = bt[2432:4032, 2432:4032]
refl = refl[2432:4032, 2432:4032]
print(grd.shape)
grd_lr = grd[::2, ::2]
print(grd_lr.shape)
leny, lenx = grd_lr.shape
rnd = np.random.normal(loc=0, scale=0.001, size=grd_lr.size)
grd_lr = grd_lr + rnd.reshape(grd_lr.shape)
if param == 'cloud_fraction':
grd_lr = np.where(grd_lr < 0, 0, grd_lr)
grd_lr = np.where(grd_lr > 1, 1, grd_lr)
x = np.arange(lenx)
y = np.arange(leny)
x_up = np.arange(0, lenx, 0.5)
y_up = np.arange(0, leny, 0.5)
grd_hr = resample_2d_linear_one(x, y, grd_lr, x_up, y_up)
print(grd_hr.shape)
h5f.close()
return grd, grd_lr, grd_hr, bt, refl
if __name__ == "__main__":
nn = CNN()
nn.run('matchup_filename')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment