diff --git a/modules/deeplearning/icing.py b/modules/deeplearning/icing.py
index fe0e3db79dabbd5c6b1ea55cc10926f1f28df75a..6c3ee9026f704fb7e8cce916e2b7cdd8a0635ec9 100644
--- a/modules/deeplearning/icing.py
+++ b/modules/deeplearning/icing.py
@@ -6,9 +6,12 @@ import os, datetime
 import numpy as np
 import xarray as xr
 import pickle
+import h5py
 
-from deeplearning.amv_raob import get_bounding_gfs_files, convert_file, get_images, get_interpolated_profile, \
-    split_matchup, shuffle_dict, get_interpolated_scalar, get_num_samples, get_time_tuple_utc, get_profile
+from deeplearning.amv_raob import get_bounding_gfs_files, convert_file, get_images, get_interpolated_profile, get_time_tuple_utc, get_profile
+
+from icing.pirep_goes import split_data
+from icing.pirep_goes import train_params_day
 
 LOG_DEVICE_PLACEMENT = False
 
@@ -49,70 +52,6 @@ img_width = 24
 NUM_VERT_LEVELS = 26
 NUM_VERT_PARAMS = 2
 
-gfs_mean_temp = [225.481110,
-                 218.950729,
-                 215.830338,
-                 212.063187,
-                 209.348038,
-                 208.787033,
-                 213.728928,
-                 218.298264,
-                 223.061020,
-                 229.190445,
-                 236.095215,
-                 242.589493,
-                 248.333237,
-                 253.357071,
-                 257.768646,
-                 261.599396,
-                 264.793671,
-                 267.667603,
-                 270.408478,
-                 272.841919,
-                 274.929138,
-                 276.826294,
-                 277.786865,
-                 278.834198,
-                 279.980408,
-                 281.308380]
-gfs_mean_temp = np.array(gfs_mean_temp)
-gfs_mean_temp = np.reshape(gfs_mean_temp, (1, gfs_mean_temp.shape[0]))
-
-gfs_std_temp = [13.037852,
-                11.669035,
-                10.775956,
-                10.428216,
-                11.705231,
-                12.352798,
-                8.892235,
-                7.101064,
-                8.505628,
-                10.815929,
-                12.139559,
-                12.720000,
-                12.929382,
-                13.023590,
-                13.135534,
-                13.543551,
-                14.449997,
-                15.241049,
-                15.638563,
-                15.943666,
-                16.178715,
-                16.458992,
-                16.700863,
-                17.109579,
-                17.630177,
-                18.080544]
-gfs_std_temp = np.array(gfs_std_temp)
-gfs_std_temp = np.reshape(gfs_std_temp, (1, gfs_std_temp.shape[0]))
-
-mean_std_dict = {'temperature': (gfs_mean_temp, gfs_std_temp), 'surface temperature': (279.35, 22.81),
-                 'MSL pressure': (1010.64, 13.46), 'tropopause temperature': (208.17, 11.36), 'tropopause pressure': (219.62, 78.79)}
-
-valid_range_dict = {'temperature': (150, 350), 'surface temperature': (150, 350), 'MSL pressure': (800, 1050),
-                    'tropopause temperature': (150, 250), 'tropopause pressure': (100, 500)}
-
 
 def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True):
     with tf.name_scope(block_name):
@@ -175,7 +114,8 @@ class IcingIntensityNN:
         self.handle = None
         self.inner_handle = None
         self.in_mem_batch = None
-        self.matchup_dict = None
+        self.filename = None
+        self.h5f = None
 
         self.logits = None
 
@@ -219,15 +159,16 @@ class IcingIntensityNN:
         self.initial_learning_rate = None
 
         n_chans = len(abi_channels)
+        NUM_PARAMS = 1
         if TRIPLET:
             n_chans *= 3
         self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans))
+        #self.X_img = tf.keras.Input(shape=NUM_PARAMS)
         self.X_prof = tf.keras.Input(shape=(NUM_VERT_LEVELS, NUM_VERT_PARAMS))
         self.X_sfc = tf.keras.Input(shape=2)
 
         self.inputs.append(self.X_img)
         self.inputs.append(self.X_prof)
-        self.inputs.append(self.X_sfc)
 
         self.DISK_CACHE = True
 
@@ -251,207 +192,77 @@ class IcingIntensityNN:
                 # Memory growth must be set before GPUs have been initialized
                 print(e)
 
-    def get_in_mem_data_batch(self, time_keys):
-        images = []
-        vprof = []
-        label = []
-        sfc = []
-
-        for key in time_keys:
-            if CACHE_DATA_IN_MEM:
-                tup = self.in_mem_data_cache.get(key)
-                if tup is not None:
-                    images.append(tup[0])
-                    vprof.append(tup[1])
-                    label.append(tup[2])
-                    sfc.append(tup[3])
-                    continue
-
-            obs = self.matchup_dict.get(key)
-            if obs is None:
-                print('no entry for: ', key)
-            timestamp = obs[0][0]
-            print('not found in cache, processing key: ', key, get_time_tuple_utc(timestamp)[0])
-
-            gfs_0, time_0, gfs_1, time_1 = get_bounding_gfs_files(timestamp)
-            if (gfs_0 is None) and (gfs_1 is None):
-                print('no GFS for: ', get_time_tuple_utc(timestamp)[0])
-                continue
-            try:
-                gfs_0 = convert_file(gfs_0)
-                if gfs_1 is not None:
-                    gfs_1 = convert_file(gfs_1)
-            except Exception as exc:
-                print(get_time_tuple_utc(timestamp)[0])
-                print(exc)
-                continue
-
-            ds_1 = None
-            try:
-                ds_0 = xr.open_dataset(gfs_0)
-                if gfs_1 is not None:
-                    ds_1 = xr.open_dataset(gfs_1)
-            except Exception as exc:
-                print(exc)
-                continue
-
-            lons = obs[:, 2]
-            lats = obs[:, 1]
-
-            half_width = [abi_half_width.get(ch) for ch in abi_2km_channels]
-            strides = [abi_stride.get(ch) for ch in abi_2km_channels]
-
-            img_a_s, img_a_s_l, img_a_s_r, idxs_a = get_images(lons, lats, timestamp, abi_2km_channels, half_width, strides, do_norm=True, daynight=DAY_NIGHT)
-            if idxs_a.size == 0:
-                print('no images for: ', timestamp)
-                continue
-
-            idxs_b = None
-            if len(abi_hkm_channels) > 0:
-                half_width = [abi_half_width.get(ch) for ch in abi_hkm_channels]
-                strides = [abi_stride.get(ch) for ch in abi_hkm_channels]
-
-                img_b_s, img_b_s_l, img_b_s_r, idxs_b = get_images(lons, lats, timestamp, abi_hkm_channels, half_width, strides, do_norm=True, daynight=DAY_NIGHT)
-                if idxs_b.size == 0:
-                    print('no hkm images for: ', timestamp)
-                    continue
-
-            if idxs_b is None:
-                common_idxs = idxs_a
-                img_a_s = img_a_s[:, common_idxs, :, :]
-                img_s = img_a_s
-                if TRIPLET:
-                    img_a_s_l = img_a_s_l[:, common_idxs, :, :]
-                    img_a_s_r = img_a_s_r[:, common_idxs, :, :]
-                    img_s_l = img_a_s_l
-                    img_s_r = img_a_s_r
-            else:
-                common_idxs = np.intersect1d(idxs_a, idxs_b)
-                img_a_s = img_a_s[:, common_idxs, :, :]
-                img_b_s = img_b_s[:, common_idxs, :, :]
-                img_s = np.vstack([img_a_s, img_b_s])
-                # TODO: Triplet support
-
-            lons = lons[common_idxs]
-            lats = lats[common_idxs]
-
-            if ds_1 is not None:
-                ndb = get_interpolated_profile(ds_0, ds_1, time_0, time_1, 'temperature', timestamp, lons, lats, do_norm=True)
-            else:
-                ndb = get_profile(ds_0, 'temperature', lons, lats, do_norm=True)
-            if ndb is None:
-                continue
-
-            if ds_1 is not None:
-                ndf = get_interpolated_profile(ds_0, ds_1, time_0, time_1, 'rh', timestamp, lons, lats, do_norm=False)
-            else:
-                ndf = get_profile(ds_0, 'rh', lons, lats, do_norm=False)
-            if ndf is None:
-                continue
-            ndf /= 100.0
-            ndb = np.stack((ndb, ndf), axis=2)
-
-            #ndd = get_interpolated_scalar(ds_0, ds_1, time_0, time_1, 'MSL pressure', timestamp, lons, lats, do_norm=False)
-            #ndd /= 1000.0
-
-            #nde = get_interpolated_scalar(ds_0, ds_1, time_0, time_1, 'surface temperature', timestamp, lons, lats, do_norm=True)
-
-            # label/truth
-            # Level of best fit (LBF)
-            ndc = obs[common_idxs, 3]
-            # AMV Predicted
-            # ndc = obs[common_idxs, 4]
-            ndc /= 1000.0
-
-            nda = np.transpose(img_s, axes=[1, 2, 3, 0])
-            if TRIPLET or CONV3D:
-                nda_l = np.transpose(img_s_l, axes=[1, 2, 3, 0])
-                nda_r = np.transpose(img_s_r, axes=[1, 2, 3, 0])
-                if CONV3D:
-                    nda = np.stack((nda_l, nda, nda_r), axis=4)
-                    nda = np.transpose(nda, axes=[0, 1, 2, 4, 3])
-                else:
-                    nda = np.concatenate([nda, nda_l, nda_r], axis=3)
-
-            images.append(nda)
-            vprof.append(ndb)
-            label.append(ndc)
-            # nds = np.stack([ndd, nde], axis=1)
-            nds = np.zeros((len(lons), 2))
-            sfc.append(nds)
-
-            if not CACHE_GFS:
-                subprocess.call(['rm', gfs_0, gfs_1])
-
-            if CACHE_DATA_IN_MEM:
-                self.in_mem_data_cache[key] = (nda, ndb, ndc, nds)
-
-            ds_0.close()
-            if ds_1 is not None:
-               ds_1.close()
-
-        images = np.concatenate(images)
-
-        label = np.concatenate(label)
-        label = np.reshape(label, (label.shape[0], 1))
-
-        vprof = np.concatenate(vprof)
-
-        sfc = np.concatenate(sfc)
-
-        return images, vprof, label, sfc
+    def get_in_mem_data_batch(self, keys):
+
+        # sort these to use as numpy indexing arrays
+        nd_keys = np.array(keys)
+        nd_keys = np.sort(nd_keys)
+
+        data = []
+        for param in train_params_day:
+            nda = self.h5f[param][nd_keys, ]
+            # nda = do_normalize(nda)
+            data.append(nda)
+        data = np.stack(data)
+        data = np.transpose(data, axes=(1,0))
+        label = self.h5f['icing_intensity'][nd_keys]
+        label = np.where(label == -1, 0, label)
+        # binary
+        label = np.where(label != 0, 1, label)
+
+        # TODO: Implement in memory cache
+        # for key in keys:
+        #     if CACHE_DATA_IN_MEM:
+        #         tup = self.in_mem_data_cache.get(key)
+        #         if tup is not None:
+        #             images.append(tup[0])
+        #             vprof.append(tup[1])
+        #             label.append(tup[2])
+        #             continue
+        #
+        #
+        #     if CACHE_DATA_IN_MEM:
+        #         self.in_mem_data_cache[key] = (nda, ndb, ndc)
+
+        return data, data, label
 
     @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
-    def data_function(self, input):
-        out = tf.numpy_function(self.get_in_mem_data_batch, [input], [tf.float32, tf.float64, tf.float64, tf.float64])
+    def data_function(self, indexes):
+        out = tf.numpy_function(self.get_in_mem_data_batch, [indexes], [tf.float64, tf.float64, tf.int32])
         return out
 
-    def get_train_dataset(self, time_keys):
-        time_keys = list(time_keys)
+    def get_train_dataset(self, indexes):
+        indexes = list(indexes)
 
-        dataset = tf.data.Dataset.from_tensor_slices(time_keys)
+        dataset = tf.data.Dataset.from_tensor_slices(indexes)
         dataset = dataset.batch(PROC_BATCH_SIZE)
         dataset = dataset.map(self.data_function, num_parallel_calls=8)
         dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
         dataset = dataset.prefetch(buffer_size=1)
         self.train_dataset = dataset
 
-    def get_test_dataset(self, time_keys):
-        time_keys = list(time_keys)
+    def get_test_dataset(self, indexes):
+        indexes = list(indexes)
 
-        dataset = tf.data.Dataset.from_tensor_slices(time_keys)
+        dataset = tf.data.Dataset.from_tensor_slices(indexes)
         dataset = dataset.batch(PROC_BATCH_SIZE)
         dataset = dataset.map(self.data_function, num_parallel_calls=8)
         self.test_dataset = dataset
 
-    def setup_pipeline(self, matchup_dict, train_dict=None, valid_test_dict=None):
-        self.matchup_dict = matchup_dict
-
-        if train_dict is None:
-            if valid_test_dict is not None:
-                self.matchup_dict = valid_test_dict
-                valid_keys = list(valid_test_dict.keys())
-                self.get_test_dataset(valid_keys)
-                self.num_data_samples = get_num_samples(valid_test_dict, valid_keys)
-                print('num test samples: ', self.num_data_samples)
-                print('setup_pipeline: Done')
-                return
+    def setup_pipeline(self, filename, train_idxs=None, test_idxs=None):
+        self.filename = filename
+        self.h5f = h5py.File(filename, 'r')
+        time = self.h5f['time']
+        num_obs = time.shape[0]
+        trn_idxs, tst_idxs = split_data(num_obs, skip=8)
+        self.num_data_samples = trn_idxs.shape[0]
 
-            train_dict, valid_test_dict = split_matchup(matchup_dict, perc=0.10)
+        self.get_train_dataset(trn_idxs)
+        self.get_test_dataset(tst_idxs)
 
-        train_dict = shuffle_dict(train_dict)
-        train_keys = list(train_dict.keys())
-
-        self.get_train_dataset(train_keys)
-
-        self.num_data_samples = get_num_samples(train_dict, train_keys)
-        print('num data samples: ', self.num_data_samples)
+        print('num train samples: ', self.num_data_samples)
         print('BATCH SIZE: ', BATCH_SIZE)
-
-        valid_keys = list(valid_test_dict.keys())
-        self.get_test_dataset(valid_keys)
-        print('num test samples: ', get_num_samples(valid_test_dict, valid_keys))
-
+        print('num test samples: ', tst_idxs.shape[0])
         print('setup_pipeline: Done')
 
     def build_1d_cnn(self):
@@ -615,7 +426,7 @@ class IcingIntensityNN:
 
     @tf.function
     def train_step(self, mini_batch):
-        inputs = [mini_batch[0], mini_batch[1], mini_batch[3]]
+        inputs = [mini_batch[0], mini_batch[1], mini_batch[2]]
         labels = mini_batch[2]
         with tf.GradientTape() as tape:
             pred = self.model(inputs, training=True)
@@ -634,7 +445,7 @@ class IcingIntensityNN:
 
     @tf.function
     def test_step(self, mini_batch):
-        inputs = [mini_batch[0], mini_batch[1], mini_batch[3]]
+        inputs = [mini_batch[0], mini_batch[1]]
         labels = mini_batch[2]
         pred = self.model(inputs, training=False)
         t_loss = self.loss(labels, pred)
@@ -643,7 +454,7 @@ class IcingIntensityNN:
         self.test_accuracy(labels, pred)
 
     def predict(self, mini_batch):
-        inputs = [mini_batch[0], mini_batch[1], mini_batch[3]]
+        inputs = [mini_batch[0], mini_batch[1]]
         labels = mini_batch[2]
         pred = self.model(inputs, training=False)
         t_loss = self.loss(labels, pred)
@@ -674,8 +485,8 @@ class IcingIntensityNN:
             proc_batch_cnt = 0
             n_samples = 0
 
-            for abi, temp, lbfp, sfc in self.train_dataset:
-                trn_ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp, sfc))
+            for abi, temp, lbfp in self.train_dataset:
+                trn_ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp))
                 trn_ds = trn_ds.batch(BATCH_SIZE)
                 for mini_batch in trn_ds:
                     if self.learningRateSchedule is not None:
@@ -691,8 +502,8 @@ class IcingIntensityNN:
                         self.test_loss.reset_states()
                         self.test_accuracy.reset_states()
 
-                        for abi_tst, temp_tst, lbfp_tst, sfc_tst in self.test_dataset:
-                            tst_ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst, sfc_tst))
+                        for abi_tst, temp_tst, lbfp_tst in self.test_dataset:
+                            tst_ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst))
                             tst_ds = tst_ds.batch(BATCH_SIZE)
                             for mini_batch_test in tst_ds:
                                 self.test_step(mini_batch_test)
@@ -718,8 +529,8 @@ class IcingIntensityNN:
 
             self.test_loss.reset_states()
             self.test_accuracy.reset_states()
-            for abi, temp, lbfp, sfc in self.test_dataset:
-                ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp, sfc))
+            for abi, temp, lbfp in self.test_dataset:
+                ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp))
                 ds = ds.batch(BATCH_SIZE)
                 for mini_batch in ds:
                     self.test_step(mini_batch)
@@ -754,16 +565,16 @@ class IcingIntensityNN:
         self.test_loss.reset_states()
         self.test_accuracy.reset_states()
 
-        for abi_tst, temp_tst, lbfp_tst, sfc_tst in self.test_dataset:
-            ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst, sfc_tst))
+        for abi_tst, temp_tst, lbfp_tst in self.test_dataset:
+            ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst))
             ds = ds.batch(BATCH_SIZE)
             for mini_batch_test in ds:
                 self.predict(mini_batch_test)
         print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result())
 
-    def run(self, matchup_dict, train_dict=None, valid_dict=None):
+    def run(self, filename, train_dict=None, valid_dict=None):
         with tf.device('/device:GPU:'+str(self.gpu_device)):
-            self.setup_pipeline(matchup_dict, train_dict=train_dict, valid_test_dict=valid_dict)
+            self.setup_pipeline(filename, train_idxs=train_dict, test_idxs=valid_dict)
             self.build_model()
             self.build_training()
             self.build_evaluation()