diff --git a/modules/deeplearning/icing.py b/modules/deeplearning/icing.py index fe0e3db79dabbd5c6b1ea55cc10926f1f28df75a..6c3ee9026f704fb7e8cce916e2b7cdd8a0635ec9 100644 --- a/modules/deeplearning/icing.py +++ b/modules/deeplearning/icing.py @@ -6,9 +6,12 @@ import os, datetime import numpy as np import xarray as xr import pickle +import h5py -from deeplearning.amv_raob import get_bounding_gfs_files, convert_file, get_images, get_interpolated_profile, \ - split_matchup, shuffle_dict, get_interpolated_scalar, get_num_samples, get_time_tuple_utc, get_profile +from deeplearning.amv_raob import get_bounding_gfs_files, convert_file, get_images, get_interpolated_profile, get_time_tuple_utc, get_profile + +from icing.pirep_goes import split_data +from icing.pirep_goes import train_params_day LOG_DEVICE_PLACEMENT = False @@ -49,70 +52,6 @@ img_width = 24 NUM_VERT_LEVELS = 26 NUM_VERT_PARAMS = 2 -gfs_mean_temp = [225.481110, - 218.950729, - 215.830338, - 212.063187, - 209.348038, - 208.787033, - 213.728928, - 218.298264, - 223.061020, - 229.190445, - 236.095215, - 242.589493, - 248.333237, - 253.357071, - 257.768646, - 261.599396, - 264.793671, - 267.667603, - 270.408478, - 272.841919, - 274.929138, - 276.826294, - 277.786865, - 278.834198, - 279.980408, - 281.308380] -gfs_mean_temp = np.array(gfs_mean_temp) -gfs_mean_temp = np.reshape(gfs_mean_temp, (1, gfs_mean_temp.shape[0])) - -gfs_std_temp = [13.037852, - 11.669035, - 10.775956, - 10.428216, - 11.705231, - 12.352798, - 8.892235, - 7.101064, - 8.505628, - 10.815929, - 12.139559, - 12.720000, - 12.929382, - 13.023590, - 13.135534, - 13.543551, - 14.449997, - 15.241049, - 15.638563, - 15.943666, - 16.178715, - 16.458992, - 16.700863, - 17.109579, - 17.630177, - 18.080544] -gfs_std_temp = np.array(gfs_std_temp) -gfs_std_temp = np.reshape(gfs_std_temp, (1, gfs_std_temp.shape[0])) - -mean_std_dict = {'temperature': (gfs_mean_temp, gfs_std_temp), 'surface temperature': (279.35, 22.81), - 'MSL pressure': (1010.64, 13.46), 'tropopause temperature': (208.17, 11.36), 'tropopause pressure': (219.62, 78.79)} - -valid_range_dict = {'temperature': (150, 350), 'surface temperature': (150, 350), 'MSL pressure': (800, 1050), - 'tropopause temperature': (150, 250), 'tropopause pressure': (100, 500)} - def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True): with tf.name_scope(block_name): @@ -175,7 +114,8 @@ class IcingIntensityNN: self.handle = None self.inner_handle = None self.in_mem_batch = None - self.matchup_dict = None + self.filename = None + self.h5f = None self.logits = None @@ -219,15 +159,16 @@ class IcingIntensityNN: self.initial_learning_rate = None n_chans = len(abi_channels) + NUM_PARAMS = 1 if TRIPLET: n_chans *= 3 self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans)) + #self.X_img = tf.keras.Input(shape=NUM_PARAMS) self.X_prof = tf.keras.Input(shape=(NUM_VERT_LEVELS, NUM_VERT_PARAMS)) self.X_sfc = tf.keras.Input(shape=2) self.inputs.append(self.X_img) self.inputs.append(self.X_prof) - self.inputs.append(self.X_sfc) self.DISK_CACHE = True @@ -251,207 +192,77 @@ class IcingIntensityNN: # Memory growth must be set before GPUs have been initialized print(e) - def get_in_mem_data_batch(self, time_keys): - images = [] - vprof = [] - label = [] - sfc = [] - - for key in time_keys: - if CACHE_DATA_IN_MEM: - tup = self.in_mem_data_cache.get(key) - if tup is not None: - images.append(tup[0]) - vprof.append(tup[1]) - label.append(tup[2]) - sfc.append(tup[3]) - continue - - obs = self.matchup_dict.get(key) - if obs is None: - print('no entry for: ', key) - timestamp = obs[0][0] - print('not found in cache, processing key: ', key, get_time_tuple_utc(timestamp)[0]) - - gfs_0, time_0, gfs_1, time_1 = get_bounding_gfs_files(timestamp) - if (gfs_0 is None) and (gfs_1 is None): - print('no GFS for: ', get_time_tuple_utc(timestamp)[0]) - continue - try: - gfs_0 = convert_file(gfs_0) - if gfs_1 is not None: - gfs_1 = convert_file(gfs_1) - except Exception as exc: - print(get_time_tuple_utc(timestamp)[0]) - print(exc) - continue - - ds_1 = None - try: - ds_0 = xr.open_dataset(gfs_0) - if gfs_1 is not None: - ds_1 = xr.open_dataset(gfs_1) - except Exception as exc: - print(exc) - continue - - lons = obs[:, 2] - lats = obs[:, 1] - - half_width = [abi_half_width.get(ch) for ch in abi_2km_channels] - strides = [abi_stride.get(ch) for ch in abi_2km_channels] - - img_a_s, img_a_s_l, img_a_s_r, idxs_a = get_images(lons, lats, timestamp, abi_2km_channels, half_width, strides, do_norm=True, daynight=DAY_NIGHT) - if idxs_a.size == 0: - print('no images for: ', timestamp) - continue - - idxs_b = None - if len(abi_hkm_channels) > 0: - half_width = [abi_half_width.get(ch) for ch in abi_hkm_channels] - strides = [abi_stride.get(ch) for ch in abi_hkm_channels] - - img_b_s, img_b_s_l, img_b_s_r, idxs_b = get_images(lons, lats, timestamp, abi_hkm_channels, half_width, strides, do_norm=True, daynight=DAY_NIGHT) - if idxs_b.size == 0: - print('no hkm images for: ', timestamp) - continue - - if idxs_b is None: - common_idxs = idxs_a - img_a_s = img_a_s[:, common_idxs, :, :] - img_s = img_a_s - if TRIPLET: - img_a_s_l = img_a_s_l[:, common_idxs, :, :] - img_a_s_r = img_a_s_r[:, common_idxs, :, :] - img_s_l = img_a_s_l - img_s_r = img_a_s_r - else: - common_idxs = np.intersect1d(idxs_a, idxs_b) - img_a_s = img_a_s[:, common_idxs, :, :] - img_b_s = img_b_s[:, common_idxs, :, :] - img_s = np.vstack([img_a_s, img_b_s]) - # TODO: Triplet support - - lons = lons[common_idxs] - lats = lats[common_idxs] - - if ds_1 is not None: - ndb = get_interpolated_profile(ds_0, ds_1, time_0, time_1, 'temperature', timestamp, lons, lats, do_norm=True) - else: - ndb = get_profile(ds_0, 'temperature', lons, lats, do_norm=True) - if ndb is None: - continue - - if ds_1 is not None: - ndf = get_interpolated_profile(ds_0, ds_1, time_0, time_1, 'rh', timestamp, lons, lats, do_norm=False) - else: - ndf = get_profile(ds_0, 'rh', lons, lats, do_norm=False) - if ndf is None: - continue - ndf /= 100.0 - ndb = np.stack((ndb, ndf), axis=2) - - #ndd = get_interpolated_scalar(ds_0, ds_1, time_0, time_1, 'MSL pressure', timestamp, lons, lats, do_norm=False) - #ndd /= 1000.0 - - #nde = get_interpolated_scalar(ds_0, ds_1, time_0, time_1, 'surface temperature', timestamp, lons, lats, do_norm=True) - - # label/truth - # Level of best fit (LBF) - ndc = obs[common_idxs, 3] - # AMV Predicted - # ndc = obs[common_idxs, 4] - ndc /= 1000.0 - - nda = np.transpose(img_s, axes=[1, 2, 3, 0]) - if TRIPLET or CONV3D: - nda_l = np.transpose(img_s_l, axes=[1, 2, 3, 0]) - nda_r = np.transpose(img_s_r, axes=[1, 2, 3, 0]) - if CONV3D: - nda = np.stack((nda_l, nda, nda_r), axis=4) - nda = np.transpose(nda, axes=[0, 1, 2, 4, 3]) - else: - nda = np.concatenate([nda, nda_l, nda_r], axis=3) - - images.append(nda) - vprof.append(ndb) - label.append(ndc) - # nds = np.stack([ndd, nde], axis=1) - nds = np.zeros((len(lons), 2)) - sfc.append(nds) - - if not CACHE_GFS: - subprocess.call(['rm', gfs_0, gfs_1]) - - if CACHE_DATA_IN_MEM: - self.in_mem_data_cache[key] = (nda, ndb, ndc, nds) - - ds_0.close() - if ds_1 is not None: - ds_1.close() - - images = np.concatenate(images) - - label = np.concatenate(label) - label = np.reshape(label, (label.shape[0], 1)) - - vprof = np.concatenate(vprof) - - sfc = np.concatenate(sfc) - - return images, vprof, label, sfc + def get_in_mem_data_batch(self, keys): + + # sort these to use as numpy indexing arrays + nd_keys = np.array(keys) + nd_keys = np.sort(nd_keys) + + data = [] + for param in train_params_day: + nda = self.h5f[param][nd_keys, ] + # nda = do_normalize(nda) + data.append(nda) + data = np.stack(data) + data = np.transpose(data, axes=(1,0)) + label = self.h5f['icing_intensity'][nd_keys] + label = np.where(label == -1, 0, label) + # binary + label = np.where(label != 0, 1, label) + + # TODO: Implement in memory cache + # for key in keys: + # if CACHE_DATA_IN_MEM: + # tup = self.in_mem_data_cache.get(key) + # if tup is not None: + # images.append(tup[0]) + # vprof.append(tup[1]) + # label.append(tup[2]) + # continue + # + # + # if CACHE_DATA_IN_MEM: + # self.in_mem_data_cache[key] = (nda, ndb, ndc) + + return data, data, label @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) - def data_function(self, input): - out = tf.numpy_function(self.get_in_mem_data_batch, [input], [tf.float32, tf.float64, tf.float64, tf.float64]) + def data_function(self, indexes): + out = tf.numpy_function(self.get_in_mem_data_batch, [indexes], [tf.float64, tf.float64, tf.int32]) return out - def get_train_dataset(self, time_keys): - time_keys = list(time_keys) + def get_train_dataset(self, indexes): + indexes = list(indexes) - dataset = tf.data.Dataset.from_tensor_slices(time_keys) + dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset - def get_test_dataset(self, time_keys): - time_keys = list(time_keys) + def get_test_dataset(self, indexes): + indexes = list(indexes) - dataset = tf.data.Dataset.from_tensor_slices(time_keys) + dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) self.test_dataset = dataset - def setup_pipeline(self, matchup_dict, train_dict=None, valid_test_dict=None): - self.matchup_dict = matchup_dict - - if train_dict is None: - if valid_test_dict is not None: - self.matchup_dict = valid_test_dict - valid_keys = list(valid_test_dict.keys()) - self.get_test_dataset(valid_keys) - self.num_data_samples = get_num_samples(valid_test_dict, valid_keys) - print('num test samples: ', self.num_data_samples) - print('setup_pipeline: Done') - return + def setup_pipeline(self, filename, train_idxs=None, test_idxs=None): + self.filename = filename + self.h5f = h5py.File(filename, 'r') + time = self.h5f['time'] + num_obs = time.shape[0] + trn_idxs, tst_idxs = split_data(num_obs, skip=8) + self.num_data_samples = trn_idxs.shape[0] - train_dict, valid_test_dict = split_matchup(matchup_dict, perc=0.10) + self.get_train_dataset(trn_idxs) + self.get_test_dataset(tst_idxs) - train_dict = shuffle_dict(train_dict) - train_keys = list(train_dict.keys()) - - self.get_train_dataset(train_keys) - - self.num_data_samples = get_num_samples(train_dict, train_keys) - print('num data samples: ', self.num_data_samples) + print('num train samples: ', self.num_data_samples) print('BATCH SIZE: ', BATCH_SIZE) - - valid_keys = list(valid_test_dict.keys()) - self.get_test_dataset(valid_keys) - print('num test samples: ', get_num_samples(valid_test_dict, valid_keys)) - + print('num test samples: ', tst_idxs.shape[0]) print('setup_pipeline: Done') def build_1d_cnn(self): @@ -615,7 +426,7 @@ class IcingIntensityNN: @tf.function def train_step(self, mini_batch): - inputs = [mini_batch[0], mini_batch[1], mini_batch[3]] + inputs = [mini_batch[0], mini_batch[1], mini_batch[2]] labels = mini_batch[2] with tf.GradientTape() as tape: pred = self.model(inputs, training=True) @@ -634,7 +445,7 @@ class IcingIntensityNN: @tf.function def test_step(self, mini_batch): - inputs = [mini_batch[0], mini_batch[1], mini_batch[3]] + inputs = [mini_batch[0], mini_batch[1]] labels = mini_batch[2] pred = self.model(inputs, training=False) t_loss = self.loss(labels, pred) @@ -643,7 +454,7 @@ class IcingIntensityNN: self.test_accuracy(labels, pred) def predict(self, mini_batch): - inputs = [mini_batch[0], mini_batch[1], mini_batch[3]] + inputs = [mini_batch[0], mini_batch[1]] labels = mini_batch[2] pred = self.model(inputs, training=False) t_loss = self.loss(labels, pred) @@ -674,8 +485,8 @@ class IcingIntensityNN: proc_batch_cnt = 0 n_samples = 0 - for abi, temp, lbfp, sfc in self.train_dataset: - trn_ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp, sfc)) + for abi, temp, lbfp in self.train_dataset: + trn_ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp)) trn_ds = trn_ds.batch(BATCH_SIZE) for mini_batch in trn_ds: if self.learningRateSchedule is not None: @@ -691,8 +502,8 @@ class IcingIntensityNN: self.test_loss.reset_states() self.test_accuracy.reset_states() - for abi_tst, temp_tst, lbfp_tst, sfc_tst in self.test_dataset: - tst_ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst, sfc_tst)) + for abi_tst, temp_tst, lbfp_tst in self.test_dataset: + tst_ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst)) tst_ds = tst_ds.batch(BATCH_SIZE) for mini_batch_test in tst_ds: self.test_step(mini_batch_test) @@ -718,8 +529,8 @@ class IcingIntensityNN: self.test_loss.reset_states() self.test_accuracy.reset_states() - for abi, temp, lbfp, sfc in self.test_dataset: - ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp, sfc)) + for abi, temp, lbfp in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((abi, temp, lbfp)) ds = ds.batch(BATCH_SIZE) for mini_batch in ds: self.test_step(mini_batch) @@ -754,16 +565,16 @@ class IcingIntensityNN: self.test_loss.reset_states() self.test_accuracy.reset_states() - for abi_tst, temp_tst, lbfp_tst, sfc_tst in self.test_dataset: - ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst, sfc_tst)) + for abi_tst, temp_tst, lbfp_tst in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst)) ds = ds.batch(BATCH_SIZE) for mini_batch_test in ds: self.predict(mini_batch_test) print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result()) - def run(self, matchup_dict, train_dict=None, valid_dict=None): + def run(self, filename, train_dict=None, valid_dict=None): with tf.device('/device:GPU:'+str(self.gpu_device)): - self.setup_pipeline(matchup_dict, train_dict=train_dict, valid_test_dict=valid_dict) + self.setup_pipeline(filename, train_idxs=train_dict, test_idxs=valid_dict) self.build_model() self.build_training() self.build_evaluation()