diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index cd33a0798cdbf3dbf254b0693f24c25307986f2c..969e5488d1e4058978a970de8965dc683d390d95 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -268,7 +268,7 @@ class SRCNN: # -------- #tmp = input_data[:, label_idx, slc_y_2, slc_x_2] tmp = input_data[:, label_idx, :, :] - tmp = smooth_2d(tmp, sigma=1.5) + tmp = smooth_2d(tmp, sigma=1.0) tmp = tmp[:, slc_y_2, slc_x_2] if label_param != 'cloud_probability': tmp = normalize(tmp, label_param, mean_std_dct) @@ -290,7 +290,7 @@ class SRCNN: # ----------------------------------------------------- #label = input_data[:, label_idx, y_128, x_128] label = input_data[:, label_idx, :, :] - label = smooth_2d(label, sigma=1.5) + # label = smooth_2d(label, sigma=1.0) label = label[:, y_128, x_128] if label_param != 'cloud_probability': @@ -762,7 +762,7 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): # grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) grd_c = get_grid_values_all(h5f, label_param) - grd_c = gaussian_filter(grd_c, sigma=1.5) + # grd_c = gaussian_filter(grd_c, sigma=1.0) grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x] hr_grd_c = grd_c.copy() hr_grd_c = hr_grd_c[y_128, x_128]