diff --git a/modules/deeplearning/espcn_l1b_l2.py b/modules/deeplearning/espcn_l1b_l2.py index 424a949e91dbee5e4c23603fae9fccad4a4ceeaa..bed757e2177b0411732d411ab127363ca726119c 100644 --- a/modules/deeplearning/espcn_l1b_l2.py +++ b/modules/deeplearning/espcn_l1b_l2.py @@ -55,8 +55,7 @@ label_params = ['refl_0_65um_nom', 'temp_11_0um_nom', 'cld_temp_acha', 'cld_pres DO_ZERO_OUT = False -data_idx, label_idx = 1, 1 -data_param = data_params[data_idx] +label_idx = 1 label_param = label_params[label_idx] x_134 = np.arange(134) @@ -211,11 +210,6 @@ class ESPCN: label = np.concatenate(label_s) data = np.concatenate(data_s) - # data = data[:, data_idx, :, :] - # data = resample(x_134, y_134, data, x_134_2, y_134_2) - # data = np.expand_dims(data, axis=3) - # data = data.astype(np.float32) - add_noise = None noise_scale = None if is_training: @@ -231,13 +225,6 @@ class ESPCN: data = np.stack(data_norm, axis=3) data = data.astype(np.float32) - add_noise = None - noise_scale = None - if is_training: - add_noise = True - noise_scale = 0.005 - data = normalize(data, data_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) - # label = label[:, label_idx, :, :] label = label[:, label_idx, 3:131:2, 3:131:2] # label = label[:, label_idx, 3:131, 3:131] @@ -684,8 +671,7 @@ def prepare(param_idx=1, filename='/Users/tomrink/data_valid_40.npy'): def run_evaluate_static(in_file, out_file, param='temp_11_0um_nom', ckpt_dir='/Users/tomrink/tf_model_sres/run-20220805173619/'): nda = np.load(in_file) - nda = nda[:, data_idx, 2:133:2, 2:133:2] - nda = np.expand_dims(nda, axis=3) + nda = np.transpose(nda[0, 2, 3, 1]) nn = ESPCN() out_sr = nn.run_evaluate(nda, param, ckpt_dir)