diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 287aafa999daf2a3bbec36d38c3a05ef6f1bc21c..34b77bed8e9f42c3961700e277bc9d3c9d869f63 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -724,36 +724,44 @@ def run_restore_static(directory, ckpt_dir, out_file=None): def run_evaluate_static(in_file, out_file, ckpt_dir): N = 8 - sub_y, sub_x = (N * 128) + 6, (N * 128) + 6 - y_0, x_0, = 2432 - int(sub_y/2), 2432 - int(sub_x/2) - x_130 = slice(2, (N * 128) + 4) - y_130 = slice(2, (N * 128) + 4) + slc_x = slice(2, N*128 + 4) + slc_y = slice(2, N*128 + 4) + slc_x_2 = slice(1, N*128 + 6, 2) + slc_y_2 = slice(1, N*128 + 6, 2) + x_2 = np.arange(int((N*128)/2) + 3) + y_2 = np.arange(int((N*128)/2) + 3) + t = np.arange(0, int((N*128)/2) + 3, 0.5) + s = np.arange(0, int((N*128)/2) + 3, 0.5) + x_k = slice(1, N*128 + 3) + y_k = slice(1, N*128 + 3) + x_128 = slice(3, N*128 + 3) + y_128 = slice(3, N*128 + 3) - slc_y_2, slc_x_2 = slice(1, 128*N + 6, 2), slice(1, 128*N + 6, 2) - y_2, x_2 = np.arange((128*N)/2 + 3), np.arange((128*N)/2 + 3) - t, s = np.arange(1, (128*N)/2 + 2, 0.5), np.arange(1, (128*N)/2 + 2, 0.5) + sub_y, sub_x = (N * 128) + 10, (N * 128) + 10 + y_0, x_0, = 2432 - int(sub_y/2), 2432 - int(sub_x/2) h5f = h5py.File(in_file, 'r') - grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom') - grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] - grd_a = grd_a[y_130, x_130] - bt = grd_a - grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) - - grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') - grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] - grd_b = grd_b[y_130, x_130] - refl = grd_b - grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) + # grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom') + # grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] + # grd_a = grd_a[y_130, x_130] + # bt = grd_a + # grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) + # + # grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') + # grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] + # grd_b = grd_b[y_130, x_130] + # refl = grd_b + # grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) grd_c = get_grid_values_all(h5f, label_param) grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x] hr_grd_c = grd_c.copy() + hr_grd_c = hr_grd_c[y_128, x_128] grd_c = grd_c[slc_y_2, slc_x_2] if label_param != 'cloud_probability': grd_c = normalize(grd_c, label_param, mean_std_dct) grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s) - print(grd_a.shape, grd_b.shape, grd_c.shape) + grd_c = grd_c[y_k, x_k] # data = np.stack([grd_a, grd_b, grd_c], axis=2) data = np.stack([grd_c], axis=2) @@ -766,40 +774,7 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): if out_file is not None: np.save(out_file, [out_sr, hr_grd_c]) else: - return out_sr, bt, refl - - -def run_evaluate_static_2(in_file, out_file, ckpt_dir): - nda = np.load(in_file) - - grd_a = nda[:, 0, :, :] - grd_a = grd_a[:, slc_y_2, slc_x_2] - grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) - grd_a = resample_2d_linear(x_2, y_2, grd_a, t, s) - - grd_b = nda[:, 2, :, :] - grd_b = grd_b[:, slc_y_2, slc_x_2] - grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) - grd_b = resample_2d_linear(x_2, y_2, grd_b, t, s) - - grd_c = nda[:, 3, :, :] - grd_c = grd_c[:, slc_y_2, slc_x_2] - if label_param != 'cloud_probability': - grd_c = normalize(grd_c, label_param, mean_std_dct) - grd_c = resample_2d_linear(x_2, y_2, grd_c, t, s) - - data = np.stack([grd_a, grd_b, grd_c], axis=3) - print(data.shape) - - nn = SRCNN() - out_sr = nn.run_evaluate(data, ckpt_dir) - if label_param != 'cloud_probability': - out_sr = denormalize(out_sr, label_param, mean_std_dct) - pass - if out_file is not None: - np.save(out_file, out_sr) - else: - return out_sr + return out_sr, None, None def analyze(fpath='/Users/tomrink/clavrx_snpp_viirs.A2019080.0100.001.2019080064252.uwssec_B00038315.level2.h5', param='cloud_probability'):