diff --git a/modules/deeplearning/cnn_cld_frac_mod_res.py b/modules/deeplearning/cnn_cld_frac_mod_res.py index c754bbbafb87476d25d5bc53e09754a90e4f90ae..5e84bc80a6403f7f6b7117bd9de65919d60fa50a 100644 --- a/modules/deeplearning/cnn_cld_frac_mod_res.py +++ b/modules/deeplearning/cnn_cld_frac_mod_res.py @@ -184,8 +184,9 @@ def get_min_max_std(grd_k): lo = np.nanmin([a, b, c, d], axis=0) hi = np.nanmax([a, b, c, d], axis=0) std = np.nanstd([a, b, c, d], axis=0) + avg = np.nanmean([a, b, c, d], axis=0) - return lo, hi, std + return lo, hi, std, mean def get_label_data(grd_k): @@ -605,7 +606,6 @@ class SRCNN: # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) # decorator commented out because pred.numpy(): pred not evaluated yet. def predict(self, inputs, labels): - labels = tf.squeeze(labels) pred = self.model([inputs], training=False) t_loss = self.loss(tf.squeeze(labels), pred)