diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 71a56352d1a37ec3ef4882be295d4e743894a2ba..caf873de77cb6295336e1b94979fbc022d162b40 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -212,8 +212,7 @@ class SRCNN: self.test_data_nda = None self.test_label_nda = None - # self.n_chans = len(data_params) + 2 - self.n_chans = 1 + self.n_chans = len(data_params) + 1 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) @@ -246,29 +245,20 @@ class SRCNN: DO_ADD_NOISE = True data_norm = [] - # for param in data_params: - # idx = params.index(param) - # tmp = input_data[:, idx, :, :] - # tmp = np.where(np.isnan(tmp), 0, tmp) - # tmp = smooth_2d(tmp, sigma=1.0) - # tmp = tmp[:, slc_y_2, slc_x_2] - # tmp = resample_2d_linear(x_2, y_2, tmp, t, s) - # tmp = tmp[:, y_k, x_k] - # tmp = normalize(tmp, param, mean_std_dct) - # if DO_ADD_NOISE: - # tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) - # data_norm.append(tmp) - # # -------------------------- - # param = 'refl_0_65um_nom' - # idx = params.index(param) - # # tmp = input_data[:, idx, slc_y_2, slc_x_2] - # tmp = input_data[:, idx, slc_y, slc_x] - # tmp = normalize(tmp, param, mean_std_dct) - # if DO_ADD_NOISE: - # tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) - # # tmp = resample_2d_linear(x_2, y_2, tmp, t, s) - # data_norm.append(tmp) - # -------- + for param in data_params: + idx = params.index(param) + tmp = input_data[:, idx, :, :] + tmp = tmp.copy() + tmp = np.where(np.isnan(tmp), 0, tmp) + # tmp = smooth_2d(tmp, sigma=1.0) + tmp = tmp[:, slc_y_2, slc_x_2] + tmp = resample_2d_linear(x_2, y_2, tmp, t, s) + tmp = tmp[:, y_k, x_k] + tmp = normalize(tmp, param, mean_std_dct) + if DO_ADD_NOISE: + tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) + data_norm.append(tmp) + # --------------------------------------------------- tmp = input_data[:, label_idx, :, :] tmp = tmp.copy() tmp = np.where(np.isnan(tmp), 0, tmp)