diff --git a/modules/deeplearning/cloud_opd_fcn_abi.py b/modules/deeplearning/cloud_opd_fcn_abi.py index 8e99ae73a875620ecbd07c1d7f8f7952011048f9..e5f757cc912a67ef6c0111043f652ad858966416 100644 --- a/modules/deeplearning/cloud_opd_fcn_abi.py +++ b/modules/deeplearning/cloud_opd_fcn_abi.py @@ -859,7 +859,7 @@ class SRCNN: cldy_frac_opd = self.run_inference_(bt, refl, refl_lo, refl_hi, refl_std, cp, opd) - cldy_frac_opd_out = np.zeros((y_len, x_len), dtype=np.int8) + cldy_frac_opd_out = np.zeros((y_len, x_len), dtype=np.float32) border = int((KERNEL_SIZE - 1) / 2) cldy_frac_opd_out[border:y_len - border, border:x_len - border] = cldy_frac_opd[0, :, :, 0] @@ -886,7 +886,7 @@ class SRCNN: np.save(out_file, (cldy_frac_opd_out, bt, refl, cp)) else: # return [cld_frac_out, bt, refl, cp, lons, lats] - return cldy_frac_opd_out + return cldy_frac_opd_out, opd def run_inference_full_disk(self, in_file, out_file): gc.collect() @@ -928,7 +928,7 @@ class SRCNN: t1 = time.time() print(' inference time: ', (t1-t0)) - cldy_frac_opd_out = np.zeros((y_len, x_len), dtype=np.int8) + cldy_frac_opd_out = np.zeros((y_len, x_len), dtype=np.float32) border = int((KERNEL_SIZE - 1) / 2) cldy_frac_opd_out[border:h_y_len, border:x_len - border] = cldy_frac_opd_nh[0, :, :, 0] cldy_frac_opd_out[h_y_len:y_len - border, border:x_len - border] = cldy_frac_opd_sh[0, :, :, 0] @@ -956,7 +956,7 @@ class SRCNN: np.save(out_file, (cldy_frac_opd_out, bt, refl, cp)) else: # return [cld_frac_out, bt, refl, cp, lons, lats] - return cldy_frac_opd_out + return cldy_frac_opd_out, opd def run_inference_(self, bt, refl, refl_lo, refl_hi, refl_std, cp, opd): bt = scale(bt, 'temp_11_0um_nom', mean_std_dct)