diff --git a/modules/deeplearning/icing_fcn.py b/modules/deeplearning/icing_fcn.py index 21204c880eaeb91f83f5fb0944d9a3387dd88035..00900f84da9ef4c2905586f0b91c8a88855f9e63 100644 --- a/modules/deeplearning/icing_fcn.py +++ b/modules/deeplearning/icing_fcn.py @@ -20,8 +20,8 @@ if NumClasses == 2: else: NumLogits = NumClasses -BATCH_SIZE = 64 -NUM_EPOCHS = 80 +BATCH_SIZE = 128 +NUM_EPOCHS = 60 TRACK_MOVING_AVERAGE = False EARLY_STOP = True @@ -583,7 +583,7 @@ class IcingIntensityFCN: self.get_evaluate_dataset(idxs) - def build_cnn(self, do_drop_out=False, do_batch_norm=True, drop_rate=0.5): + def build_cnn(self, do_drop_out=True, do_batch_norm=True, drop_rate=0.5): print('build_cnn') # padding = "VALID" padding = "SAME" @@ -731,7 +731,7 @@ class IcingIntensityFCN: self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) - initial_learning_rate = 0.0006 + initial_learning_rate = 0.0005 decay_rate = 0.95 steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch decay_steps = int(steps_per_epoch)