From 618c7458cceb54acf05289ad342dc7c1c58354ff Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 19 Apr 2021 11:02:41 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/icing.py | 43 ++++++++++++----------------------- 1 file changed, 14 insertions(+), 29 deletions(-) diff --git a/modules/deeplearning/icing.py b/modules/deeplearning/icing.py index ebe77b82..f960e9e1 100644 --- a/modules/deeplearning/icing.py +++ b/modules/deeplearning/icing.py @@ -7,8 +7,6 @@ import numpy as np import pickle import h5py -from deeplearning.amv_raob import get_bounding_gfs_files, convert_file, get_images, get_interpolated_profile, get_time_tuple_utc, get_profile - from icing.pirep_goes import split_data, normalize LOG_DEVICE_PLACEMENT = False @@ -30,26 +28,12 @@ DAY_NIGHT = 'ANY' TRIPLET = False CONV3D = False -abi_2km_channels = ['14', '08', '11', '13', '15', '16'] -# abi_2km_channels = ['08', '09', '10'] -abi_hkm_channels = [] -# abi_channels = abi_2km_channels + abi_hkm_channels -abi_channels = abi_2km_channels - -abi_mean = {'08': 236.014, '14': 275.229, '02': 0.049, '11': 273.582, '13': 275.796, '15': 272.928, '16': 260.956, '09': 244.502, '10': 252.375} -abi_std = {'08': 7.598, '14': 20.443, '02': 0.082, '11': 19.539, '13': 20.431, '15': 20.104, '16': 15.720, '09': 9.827, '10': 11.765} -abi_valid_range = {'02': [0.001, 120], '08': [150, 350], '14': [150, 350], '11': [150, 350], '13': [150, 350], '15': [150, 350], '16': [150, 350], '09': [150, 350], '10': [150, 350]} -abi_half_width = {'08': 12, '14': 12, '02': 48, '11': 12, '13': 12, '15': 12, '16': 12, '09': 12, '10': 12} -#abi_half_width = {'08': 6, '14': 6, '02': 24, '11': 6, '13': 6, '15': 6, '16': 6, '09': 6, '10': 6} -#abi_half_width = {'08': 3, '14': 3, '02': 12, '11': 3, '13': 3, '15': 3, '16': 3, '09': 3, '10': 3} -abi_stride = {'08': 1, '14': 1, '02': 4, '11': 1, '13': 1, '15': 1, '16': 1, '09': 1, '10': 1} img_width = 16 -#img_width = 12 -#img_width = 6 +mean_std_file = '/Users/tomrink/data/icing/fovs_mean_std_day.pkl' -train_params_day = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha', - 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp'] +train_params = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha', + 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp'] #'cloud_phase'] @@ -159,17 +143,17 @@ class IcingIntensityNN: self.num_data_samples = None self.initial_learning_rate = None - n_chans = len(abi_channels) + n_chans = len(train_params) NUM_PARAMS = 1 if TRIPLET: n_chans *= 3 - self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans)) - #self.X_img = tf.keras.Input(shape=NUM_PARAMS) + #self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans)) + self.X_img = tf.keras.Input(shape=n_chans) #self.X_prof = tf.keras.Input(shape=(NUM_VERT_LEVELS, NUM_VERT_PARAMS)) - self.X_sfc = tf.keras.Input(shape=2) + #self.X_sfc = tf.keras.Input(shape=2) self.inputs.append(self.X_img) - self.inputs.append(self.X_prof) + #self.inputs.append(self.X_prof) self.DISK_CACHE = True @@ -200,7 +184,7 @@ class IcingIntensityNN: nd_keys = np.sort(nd_keys) data = [] - for param in train_params_day: + for param in train_params: nda = self.h5f[param][nd_keys, ] # nda = normalize(nda, param) data.append(nda) @@ -552,11 +536,12 @@ class IcingIntensityNN: self.writer_valid.close() def build_model(self): - flat = self.build_cnn() - flat_1d = self.build_1d_cnn() + # flat = self.build_cnn() + # flat_1d = self.build_1d_cnn() # flat = tf.keras.layers.concatenate([flat, flat_1d, flat_anc]) - flat = tf.keras.layers.concatenate([flat, flat_1d]) - self.build_dnn(flat) + # flat = tf.keras.layers.concatenate([flat, flat_1d]) + # self.build_dnn(flat) + self.build_dnn() self.model = tf.keras.Model(self.inputs, self.logits) def restore(self, ckpt_dir): -- GitLab