diff --git a/modules/deeplearning/cnn_cld_frac.py b/modules/deeplearning/cnn_cld_frac.py index e486fe19f04b877dcbbf19318f8c147e52982e34..31ad79bb887c87653f5422c32e8646f16fe36bd1 100644 --- a/modules/deeplearning/cnn_cld_frac.py +++ b/modules/deeplearning/cnn_cld_frac.py @@ -37,7 +37,6 @@ NOISE_TRAINING = False NOISE_STDDEV = 0.01 DO_AUGMENT = True -DO_SMOOTH = True SIGMA = 1.0 DO_ZERO_OUT = False DO_ESPCN = False # Note: If True, cannot do mixed resolution input fields (Adjust accordingly below) @@ -374,8 +373,6 @@ class SRCNN: else: # Half res upsampled to full res: tmp = upsample(tmp) tmp = normalize(tmp, param, mean_std_dct) - if DO_ADD_NOISE: - tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) data_norm.append(tmp) for param in data_params_full: @@ -386,8 +383,6 @@ class SRCNN: # Full res: tmp = tmp[:, slc_y, slc_x] tmp = normalize(tmp, param, mean_std_dct) - if DO_ADD_NOISE: - tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) data_norm.append(tmp) # --------------------------------------------------- tmp = input_data[:, label_idx, :, :] @@ -401,13 +396,6 @@ class SRCNN: tmp = tmp[:, slc_y, slc_x] if label_param != 'cloud_probability': tmp = normalize(tmp, label_param, mean_std_dct) - if DO_ADD_NOISE: - tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) - else: - if DO_ADD_NOISE: - tmp = add_noise(tmp, noise_scale=NOISE_STDDEV) - tmp = np.where(tmp < 0.0, 0.0, tmp) - tmp = np.where(tmp > 1.0, 1.0, tmp) data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3)