From 60c682b2885f12e6fe9c23739f2c3847bee1035e Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Tue, 8 Nov 2022 15:43:59 -0600 Subject: [PATCH] snapshot... --- modules/deeplearning/espcn_l1b_l2.py | 15 +++++++++------ 1 file changed, 9 insertions(+), 6 deletions(-) diff --git a/modules/deeplearning/espcn_l1b_l2.py b/modules/deeplearning/espcn_l1b_l2.py index 2b3ebc57..a9b3c391 100644 --- a/modules/deeplearning/espcn_l1b_l2.py +++ b/modules/deeplearning/espcn_l1b_l2.py @@ -72,6 +72,8 @@ y_134_2 = y_134[2:133:2] slc_x = slice(3, 131) slc_y = slice(3, 131) +slc_x_2 = slice(3, 131, 2) +slc_y_2 = slice(3, 131, 2) def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.leaky_relu, padding='SAME', scale=None): @@ -214,17 +216,19 @@ class ESPCN: data_norm = [] for k, param in enumerate(data_params): - tmp = input_data[:, k, :, :] + # tmp = input_data[:, k, :, :] + tmp = input_data[:, k, slc_y_2, slc_x_2] tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) - tmp = resample_2d_linear(x_134, y_134, tmp, x_134_2, y_134_2) + # tmp = resample_2d_linear(x_134, y_134, tmp, x_134_2, y_134_2) data_norm.append(tmp) - tmp = input_data[:, label_idx, :, ] + # tmp = input_data[:, label_idx, :, ] + tmp = input_data[:, label_idx, slc_y_2, slc_x_2] if label_param != 'cloud_fraction': tmp = normalize(tmp, label_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) else: tmp = np.where(np.isnan(tmp), 0, tmp) - tmp = resample_2d_linear(x_134, y_134, tmp, x_134_2, y_134_2) + # tmp = resample_2d_linear(x_134, y_134, tmp, x_134_2, y_134_2) data_norm.append(tmp) data = np.stack(data_norm, axis=3) @@ -336,7 +340,6 @@ class ESPCN: print('num test samples: ', tst_idxs.shape[0]) print('setup_pipeline: Done') - def setup_test_pipeline(self, test_data_files): self.test_data_files = test_data_files tst_idxs = np.arange(len(test_data_files)) @@ -389,7 +392,7 @@ class ESPCN: conv = conv_b print(conv.shape) - conv = tf.keras.layers.Conv2D(IMG_DEPTH * (factor ** 2), 3, padding='same')(conv) + conv = tf.keras.layers.Conv2D(IMG_DEPTH * (factor ** 2), 3, padding='same', activation=activation)(conv) print(conv.shape) conv = tf.nn.depth_to_space(conv, factor) -- GitLab