diff --git a/modules/icing/util.py b/modules/icing/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..944d85a13d2194196f1a13e19b06183a98a59f54
--- /dev/null
+++ b/modules/icing/util.py
@@ -0,0 +1,644 @@
+import numpy as np
+import deeplearning.icing_fcn as icing_fcn
+import deeplearning.icing_cnn as icing_cnn
+from icing.pirep_goes import setup, time_filter_3
+from util.util import get_time_tuple_utc, is_day, check_oblique, homedir, write_icing_file_nc4,\
+    make_for_full_domain_predict, prepare_evaluate
+from util.plot import make_icing_image
+from util.geos_nav import get_navigation, get_lon_lat_2d_mesh
+from util.setup import model_path_day, model_path_night
+from aeolus.datasource import CLAVRx, CLAVRx_VIIRS, GOESL1B, CLAVRx_H08
+import h5py
+import datetime
+
+
+def get_training_parameters(day_night='DAY', l1b_andor_l2='both'):
+    if day_night == 'DAY':
+        train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
+                           'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
+
+        train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
+                            'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
+                            'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
+    else:
+        train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
+                           'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_acha', 'cld_opd_acha']
+
+        train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
+                            'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom']
+
+    if l1b_andor_l2 == 'both':
+        train_params = train_params_l1b + train_params_l2
+    elif l1b_andor_l2 == 'l1b':
+        train_params = train_params_l1b
+    elif l1b_andor_l2 == 'l2':
+        train_params = train_params_l2
+
+    return train_params
+
+
+flt_level_ranges = {k: None for k in range(5)}
+flt_level_ranges[0] = [0.0, 2000.0]
+flt_level_ranges[1] = [2000.0, 4000.0]
+flt_level_ranges[2] = [4000.0, 6000.0]
+flt_level_ranges[3] = [6000.0, 8000.0]
+flt_level_ranges[4] = [8000.0, 15000.0]
+
+
+def run_make_images(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', ckpt_dir_s_path='/Users/tomrink/tf_model/', prob_thresh=0.5, satellite='GOES16', domain='CONUS',
+                    extent=[-105, -70, 15, 50],
+                    pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv',
+                    obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None,
+                    use_flight_altitude=False, day_night='DAY', l1b_andor_l2='l2'):
+
+    if pirep_file is not None:
+        ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file)
+
+    if satellite == 'H08':
+        clvrx_ds = CLAVRx_H08(clvrx_dir)
+    else:
+        clvrx_ds = CLAVRx(clvrx_dir)
+    clvrx_files = clvrx_ds.flist
+
+    alt_lo, alt_hi = 0.0, 15000.0
+    if flight_level is not None:
+        alt_lo, alt_hi = flt_level_ranges[flight_level]
+
+    train_params = get_training_parameters(day_night=day_night, l1b_andor_l2=l1b_andor_l2)
+
+    for fidx, fname in enumerate(clvrx_files):
+        h5f = h5py.File(fname, 'r')
+        dto = clvrx_ds.get_datetime(fname)
+        ts = dto.timestamp()
+        clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')
+
+        data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain)
+        num_elems, num_lines = len(cc), len(ll)
+
+        dto, _ = get_time_tuple_utc(ts)
+        dto_0 = dto - datetime.timedelta(minutes=30)
+        dto_1 = dto + datetime.timedelta(minutes=30)
+        ts_0 = dto_0.timestamp()
+        ts_1 = dto_1.timestamp()
+
+        if pirep_file is not None:
+            _, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi)
+        elif obs_times is not None:
+            keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1)
+            keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False)
+            keep_lons = obs_lons[keep]
+            keep_lats = obs_lats[keep]
+        else:
+            keep_lons = None
+            keep_lats = None
+
+        ice_lons, ice_lats, preds_2d = icing_cnn.run_evaluate_static_avg(data_dct, ll, cc, ckpt_dir_s_path=ckpt_dir_s_path,
+                                                                         flight_level=flight_level, prob_thresh=prob_thresh,
+                                                                         satellite=satellite, domain=domain,
+                                                                         use_flight_altitude=use_flight_altitude)
+
+        make_icing_image(h5f, None, ice_lons, ice_lats, clvrx_str_time, satellite, domain,
+                         ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent)
+
+        # preds_2d_dct, probs_2d_dct = run_evaluate_static(data_dct, num_lines, num_elems, day_night=day_night,
+        #                                                  ckpt_dir_s_path=ckpt_dir_s_path, prob_thresh=prob_thresh,
+        #                                                  flight_levels=[0],
+        #                                                  use_flight_altitude=use_flight_altitude)
+        #
+        # make_icing_image(None, probs_2d_dct[0], None, None, clvrx_str_time, satellite, domain,
+        #                  ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent)
+
+        h5f.close()
+        print('Done: ', clvrx_str_time)
+
+
+def run_icing_predict(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir,
+                      day_model_path=model_path_day, night_model_path=model_path_night,
+                      prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO',
+                      l1b_andor_l2='both', use_flight_altitude=True, res_fac=1, use_nan=False):
+    if use_flight_altitude is True:
+        flight_levels = [0, 1, 2, 3, 4]
+    else:
+        flight_levels = [0]
+
+    day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2)
+    nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2)
+
+    if day_night == 'AUTO':
+        train_params = list(set(day_train_params + nght_train_params))
+    elif day_night == 'DAY':
+        train_params = day_train_params
+    elif day_night == 'NIGHT':
+        train_params = nght_train_params
+
+    if satellite == 'H08':
+        clvrx_ds = CLAVRx_H08(clvrx_dir)
+    else:
+        clvrx_ds = CLAVRx(clvrx_dir)
+    clvrx_files = clvrx_ds.flist
+
+    for fidx, fname in enumerate(clvrx_files):
+        h5f = h5py.File(fname, 'r')
+        dto = clvrx_ds.get_datetime(fname)
+        ts = dto.timestamp()
+        clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')
+
+        data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain, res_fac=res_fac)
+
+        if fidx == 0:
+            num_elems = len(cc)
+            num_lines = len(ll)
+            nav = get_navigation(satellite, domain)
+            lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc, offset=int(8 / res_fac))
+
+        ancil_data_dct, _, _ = make_for_full_domain_predict(h5f, name_list=
+                            ['solar_zenith_angle', 'sensor_zenith_angle', 'cld_height_acha', 'cld_geo_thick'],
+                            satellite=satellite, domain=domain, res_fac=res_fac)
+
+        satzen = ancil_data_dct['sensor_zenith_angle']
+        solzen = ancil_data_dct['solar_zenith_angle']
+        day_idxs = []
+        nght_idxs = []
+        for j in range(num_lines):
+            for i in range(num_elems):
+                k = i + j*num_elems
+                if not check_oblique(satzen[k]):
+                    continue
+                if is_day(solzen[k]):
+                    day_idxs.append(k)
+                else:
+                    nght_idxs.append(k)
+
+        num_tiles = num_lines * num_elems
+        num_day_tiles = len(day_idxs)
+        num_nght_tiles = len(nght_idxs)
+
+        # initialize output arrays
+        probs_2d_dct = {flvl: None for flvl in flight_levels}
+        preds_2d_dct = {flvl: None for flvl in flight_levels}
+        for flvl in flight_levels:
+            fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8)
+            fd_preds[:] = -1
+            fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32)
+            fd_probs[:] = -1.0
+            preds_2d_dct[flvl] = fd_preds
+            probs_2d_dct[flvl] = fd_probs
+
+        if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0:
+
+            day_data_dct = {name: [] for name in day_train_params}
+            for name in day_train_params:
+                for k in day_idxs:
+                    day_data_dct[name].append(data_dct[name][k])
+            day_grd_dct = {name: None for name in day_train_params}
+            for ds_name in day_train_params:
+                day_grd_dct[ds_name] = np.stack(day_data_dct[ds_name])
+
+            preds_day_dct, probs_day_dct = icing_cnn.run_evaluate_static(day_grd_dct, num_day_tiles, day_model_path,
+                                                                         day_night='DAY', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh,
+                                                                         use_flight_altitude=use_flight_altitude,
+                                                                         flight_levels=flight_levels)
+            day_idxs = np.array(day_idxs)
+            for flvl in flight_levels:
+                day_preds = preds_day_dct[flvl]
+                day_probs = probs_day_dct[flvl]
+                fd_preds = preds_2d_dct[flvl]
+                fd_probs = probs_2d_dct[flvl]
+                fd_preds[day_idxs] = day_preds[:]
+                fd_probs[day_idxs] = day_probs[:]
+
+        if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0:
+
+            nght_data_dct = {name: [] for name in nght_train_params}
+            for name in nght_train_params:
+                for k in nght_idxs:
+                    nght_data_dct[name].append(data_dct[name][k])
+            nght_grd_dct = {name: None for name in nght_train_params}
+            for ds_name in nght_train_params:
+                nght_grd_dct[ds_name] = np.stack(nght_data_dct[ds_name])
+
+            preds_nght_dct, probs_nght_dct = icing_cnn.run_evaluate_static(nght_grd_dct, num_nght_tiles, night_model_path,
+                                                                           day_night='NIGHT', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh,
+                                                                           use_flight_altitude=use_flight_altitude,
+                                                                           flight_levels=flight_levels)
+            nght_idxs = np.array(nght_idxs)
+            for flvl in flight_levels:
+                nght_preds = preds_nght_dct[flvl]
+                nght_probs = probs_nght_dct[flvl]
+                fd_preds = preds_2d_dct[flvl]
+                fd_probs = probs_2d_dct[flvl]
+                fd_preds[nght_idxs] = nght_preds[:]
+                fd_probs[nght_idxs] = nght_probs[:]
+
+        for flvl in flight_levels:
+            fd_preds = preds_2d_dct[flvl]
+            fd_probs = probs_2d_dct[flvl]
+            preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems))
+            probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems))
+
+        write_icing_file_nc4(clvrx_str_time, output_dir, preds_2d_dct, probs_2d_dct,
+                             x_rad, y_rad, lons_2d, lats_2d, cc, ll,
+                             satellite=satellite, domain=domain, use_nan=use_nan, prob_thresh=prob_thresh)
+
+        print('Done: ', clvrx_str_time)
+        h5f.close()
+
+
+def run_icing_predict_fcn(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir,
+                          day_model_path=model_path_day, night_model_path=model_path_night,
+                          prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO',
+                          l1b_andor_l2='both', use_flight_altitude=False, res_fac=1, use_nan=False):
+    if use_flight_altitude is True:
+        flight_levels = [0, 1, 2, 3, 4]
+    else:
+        flight_levels = [0]
+
+    day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2)
+    nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2)
+
+    if day_night == 'AUTO':
+        train_params = list(set(day_train_params + nght_train_params))
+    elif day_night == 'DAY':
+        train_params = day_train_params
+    elif day_night == 'NIGHT':
+        train_params = nght_train_params
+
+    if satellite == 'H08':
+        clvrx_ds = CLAVRx_H08(clvrx_dir)
+    else:
+        clvrx_ds = CLAVRx(clvrx_dir)
+    clvrx_files = clvrx_ds.flist
+
+    for fidx, fname in enumerate(clvrx_files):
+        h5f = h5py.File(fname, 'r')
+        dto = clvrx_ds.get_datetime(fname)
+        ts = dto.timestamp()
+        clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')
+
+        data_dct, solzen, satzen, ll, cc = prepare_evaluate(h5f, name_list=train_params, satellite=satellite, domain=domain, offset=8)
+        num_elems = len(cc)
+        num_lines = len(ll)
+
+        if fidx == 0:
+            nav = get_navigation(satellite, domain)
+            lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc)
+
+        day_idxs = solzen < 80.0
+        num_day_tiles = np.sum(day_idxs)
+
+        nght_idxs = solzen > 100.0
+        num_nght_tiles = np.sum(nght_idxs)
+
+        # initialize output arrays
+        probs_2d_dct = {flvl: None for flvl in flight_levels}
+        preds_2d_dct = {flvl: None for flvl in flight_levels}
+        for flvl in flight_levels:
+            fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8)
+            fd_preds[:] = -1
+            fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32)
+            fd_probs[:] = -1.0
+            preds_2d_dct[flvl] = fd_preds
+            probs_2d_dct[flvl] = fd_probs
+
+        if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0:
+
+            preds_day_dct, probs_day_dct = icing_fcn.run_evaluate_static(data_dct, 1, day_model_path,
+                                                                         day_night='DAY', l1b_or_l2=l1b_andor_l2,
+                                                                         prob_thresh=prob_thresh,
+                                                                         use_flight_altitude=use_flight_altitude,
+                                                                         flight_levels=flight_levels)
+            for flvl in flight_levels:
+                preds = preds_day_dct[flvl]
+                probs = probs_day_dct[flvl]
+                fd_preds = preds_2d_dct[flvl]
+                fd_probs = probs_2d_dct[flvl]
+                fd_preds[day_idxs] = preds[day_idxs]
+                fd_probs[day_idxs] = probs[day_idxs]
+
+        if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0:
+            preds_nght_dct, probs_nght_dct = icing_fcn.run_evaluate_static_fcn(data_dct, 1, night_model_path,
+                                                                               day_night='NIGHT', l1b_or_l2=l1b_andor_l2,
+                                                                               prob_thresh=prob_thresh,
+                                                                               use_flight_altitude=use_flight_altitude,
+                                                                               flight_levels=flight_levels)
+            for flvl in flight_levels:
+                preds = preds_nght_dct[flvl]
+                probs = probs_nght_dct[flvl]
+                fd_preds = preds_2d_dct[flvl]
+                fd_probs = probs_2d_dct[flvl]
+                fd_preds[nght_idxs] = preds[nght_idxs]
+                fd_probs[nght_idxs] = probs[nght_idxs]
+
+        for flvl in flight_levels:
+            fd_preds = preds_2d_dct[flvl]
+            fd_probs = probs_2d_dct[flvl]
+            preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems))
+            probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems))
+
+        write_icing_file_nc4(clvrx_str_time, output_dir, preds_2d_dct, probs_2d_dct,
+                             x_rad, y_rad, lons_2d, lats_2d, cc, ll,
+                             satellite=satellite, domain=domain, use_nan=use_nan, prob_thresh=prob_thresh)
+
+        print('Done: ', clvrx_str_time)
+        h5f.close()
+
+
+def run_icing_predict_image(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir,
+                            day_model_path=model_path_day, night_model_path=model_path_night,
+                            prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO',
+                            l1b_andor_l2='BOTH', use_flight_altitude=True, res_fac=1,
+                            extent=[-105, -70, 15, 50],
+                            pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv',
+                            obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None):
+
+    if use_flight_altitude is True:
+        flight_levels = [0, 1, 2, 3, 4]
+    else:
+        flight_levels = [0]
+
+    if pirep_file is not None:
+        ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file)
+
+    alt_lo, alt_hi = 0.0, 15000.0
+    if flight_level is not None:
+        alt_lo, alt_hi = flt_level_ranges[flight_level]
+
+    day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2)
+    nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2)
+
+    if day_night == 'AUTO':
+        train_params = list(set(day_train_params + nght_train_params))
+    elif day_night == 'DAY':
+        train_params = day_train_params
+    elif day_night == 'NIGHT':
+        train_params = nght_train_params
+
+    if satellite == 'H08':
+        clvrx_ds = CLAVRx_H08(clvrx_dir)
+    else:
+        clvrx_ds = CLAVRx(clvrx_dir)
+    clvrx_files = clvrx_ds.flist
+
+    for fidx, fname in enumerate(clvrx_files):
+        h5f = h5py.File(fname, 'r')
+        dto = clvrx_ds.get_datetime(fname)
+        ts = dto.timestamp()
+        clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')
+
+        data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain, res_fac=res_fac)
+
+        if fidx == 0:
+            num_elems = len(cc)
+            num_lines = len(ll)
+            nav = get_navigation(satellite, domain)
+
+        ancil_data_dct, _, _ = make_for_full_domain_predict(h5f, name_list=
+                            ['solar_zenith_angle', 'sensor_zenith_angle', 'cld_height_acha', 'cld_geo_thick'],
+                            satellite=satellite, domain=domain, res_fac=res_fac)
+
+        satzen = ancil_data_dct['sensor_zenith_angle']
+        solzen = ancil_data_dct['solar_zenith_angle']
+        day_idxs = []
+        nght_idxs = []
+        for j in range(num_lines):
+            for i in range(num_elems):
+                k = i + j*num_elems
+                if not check_oblique(satzen[k]):
+                    continue
+                if is_day(solzen[k]):
+                    day_idxs.append(k)
+                else:
+                    nght_idxs.append(k)
+
+        num_tiles = num_lines * num_elems
+        num_day_tiles = len(day_idxs)
+        num_nght_tiles = len(nght_idxs)
+
+        # initialize output arrays
+        probs_2d_dct = {flvl: None for flvl in flight_levels}
+        preds_2d_dct = {flvl: None for flvl in flight_levels}
+        for flvl in flight_levels:
+            fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8)
+            fd_preds[:] = -1
+            fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32)
+            fd_probs[:] = -1.0
+            preds_2d_dct[flvl] = fd_preds
+            probs_2d_dct[flvl] = fd_probs
+
+        if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0:
+
+            day_data_dct = {name: [] for name in day_train_params}
+            for name in day_train_params:
+                for k in day_idxs:
+                    day_data_dct[name].append(data_dct[name][k])
+            day_grd_dct = {name: None for name in day_train_params}
+            for ds_name in day_train_params:
+                day_grd_dct[ds_name] = np.stack(day_data_dct[ds_name])
+
+            preds_day_dct, probs_day_dct = icing_cnn.run_evaluate_static(day_grd_dct, num_day_tiles, day_model_path,
+                                                                         day_night='DAY', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh,
+                                                                         use_flight_altitude=use_flight_altitude,
+                                                                         flight_levels=flight_levels)
+            day_idxs = np.array(day_idxs)
+            for flvl in flight_levels:
+                day_preds = preds_day_dct[flvl]
+                day_probs = probs_day_dct[flvl]
+                fd_preds = preds_2d_dct[flvl]
+                fd_probs = probs_2d_dct[flvl]
+                fd_preds[day_idxs] = day_preds[:]
+                fd_probs[day_idxs] = day_probs[:]
+
+        if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0:
+
+            nght_data_dct = {name: [] for name in nght_train_params}
+            for name in nght_train_params:
+                for k in nght_idxs:
+                    nght_data_dct[name].append(data_dct[name][k])
+            nght_grd_dct = {name: None for name in nght_train_params}
+            for ds_name in nght_train_params:
+                nght_grd_dct[ds_name] = np.stack(nght_data_dct[ds_name])
+
+            preds_nght_dct, probs_nght_dct = icing_cnn.run_evaluate_static(nght_grd_dct, num_nght_tiles, night_model_path,
+                                                                           day_night='NIGHT', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh,
+                                                                           use_flight_altitude=use_flight_altitude,
+                                                                           flight_levels=flight_levels)
+            nght_idxs = np.array(nght_idxs)
+            for flvl in flight_levels:
+                nght_preds = preds_nght_dct[flvl]
+                nght_probs = probs_nght_dct[flvl]
+                fd_preds = preds_2d_dct[flvl]
+                fd_probs = probs_2d_dct[flvl]
+                fd_preds[nght_idxs] = nght_preds[:]
+                fd_probs[nght_idxs] = nght_probs[:]
+
+        for flvl in flight_levels:
+            fd_preds = preds_2d_dct[flvl]
+            fd_probs = probs_2d_dct[flvl]
+            preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems))
+            probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems))
+
+        dto, _ = get_time_tuple_utc(ts)
+        dto_0 = dto - datetime.timedelta(minutes=30)
+        dto_1 = dto + datetime.timedelta(minutes=30)
+        ts_0 = dto_0.timestamp()
+        ts_1 = dto_1.timestamp()
+
+        if pirep_file is not None:
+            _, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi)
+        elif obs_times is not None:
+            keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1)
+            keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False)
+            keep_lons = obs_lons[keep]
+            keep_lats = obs_lats[keep]
+        else:
+            keep_lons = None
+            keep_lats = None
+
+        prob_s = []
+        for flvl in flight_levels:
+            probs = probs_2d_dct[flvl]
+            prob_s.append(probs)
+        prob_s = np.stack(prob_s, axis=-1)
+        max_prob = np.max(prob_s, axis=2)
+        max_prob = np.where(max_prob < 0.5, np.nan, max_prob)
+
+        make_icing_image(h5f, max_prob, None, None, clvrx_str_time, satellite, domain,
+                         ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent)
+
+        print('Done: ', clvrx_str_time)
+        h5f.close()
+
+
+def run_icing_predict_image_fcn(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir,
+                                day_model_path=model_path_day, night_model_path=model_path_night,
+                                prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO',
+                                l1b_andor_l2='BOTH', use_flight_altitude=True, res_fac=1,
+                                extent=[-105, -70, 15, 50],
+                                pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv',
+                                obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None):
+
+    if use_flight_altitude is True:
+        flight_levels = [0, 1, 2, 3, 4]
+    else:
+        flight_levels = [0]
+
+    if pirep_file is not None:
+        ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file)
+
+    alt_lo, alt_hi = 0.0, 15000.0
+    if flight_level is not None:
+        alt_lo, alt_hi = flt_level_ranges[flight_level]
+
+    day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2)
+    nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2)
+
+    if day_night == 'AUTO':
+        train_params = list(set(day_train_params + nght_train_params))
+    elif day_night == 'DAY':
+        train_params = day_train_params
+    elif day_night == 'NIGHT':
+        train_params = nght_train_params
+
+    if satellite == 'H08':
+        clvrx_ds = CLAVRx_H08(clvrx_dir)
+    else:
+        clvrx_ds = CLAVRx(clvrx_dir)
+    clvrx_files = clvrx_ds.flist
+
+    for fidx, fname in enumerate(clvrx_files):
+        h5f = h5py.File(fname, 'r')
+        dto = clvrx_ds.get_datetime(fname)
+        ts = dto.timestamp()
+        clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M')
+
+        dto, _ = get_time_tuple_utc(ts)
+        dto_0 = dto - datetime.timedelta(minutes=30)
+        dto_1 = dto + datetime.timedelta(minutes=30)
+        ts_0 = dto_0.timestamp()
+        ts_1 = dto_1.timestamp()
+
+        if pirep_file is not None:
+            _, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi)
+        elif obs_times is not None:
+            keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1)
+            keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False)
+            keep_lons = obs_lons[keep]
+            keep_lats = obs_lats[keep]
+        else:
+            keep_lons = None
+            keep_lats = None
+
+        data_dct, solzen, satzen, ll, cc = prepare_evaluate(h5f, name_list=train_params, satellite=satellite, domain=domain, offset=8)
+        num_elems = len(cc)
+        num_lines = len(ll)
+
+        if fidx == 0:
+            nav = get_navigation(satellite, domain)
+            lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc)
+
+        day_idxs = solzen < 80.0
+        num_day_tiles = np.sum(day_idxs)
+
+        nght_idxs = solzen > 100.0
+        num_nght_tiles = np.sum(nght_idxs)
+
+        # initialize output arrays
+        probs_2d_dct = {flvl: None for flvl in flight_levels}
+        preds_2d_dct = {flvl: None for flvl in flight_levels}
+        for flvl in flight_levels:
+            fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8)
+            fd_preds[:] = -1
+            fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32)
+            fd_probs[:] = -1.0
+            preds_2d_dct[flvl] = fd_preds
+            probs_2d_dct[flvl] = fd_probs
+
+        if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0:
+
+            preds_day_dct, probs_day_dct = icing_fcn.run_evaluate_static(data_dct, day_model_path,
+                                                                         day_night='DAY', l1b_or_l2=l1b_andor_l2,
+                                                                         prob_thresh=prob_thresh,
+                                                                         use_flight_altitude=use_flight_altitude,
+                                                                         flight_levels=flight_levels)
+            for flvl in flight_levels:
+                preds = preds_day_dct[flvl]
+                probs = probs_day_dct[flvl]
+                fd_preds = preds_2d_dct[flvl]
+                fd_probs = probs_2d_dct[flvl]
+                fd_preds[day_idxs] = preds[day_idxs]
+                fd_probs[day_idxs] = probs[day_idxs]
+
+        if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0:
+            preds_nght_dct, probs_nght_dct = icing_fcn.run_evaluate_static_fcn(data_dct, night_model_path,
+                                                                               day_night='NIGHT', l1b_or_l2=l1b_andor_l2,
+                                                                               prob_thresh=prob_thresh,
+                                                                               use_flight_altitude=use_flight_altitude,
+                                                                               flight_levels=flight_levels)
+            for flvl in flight_levels:
+                preds = preds_nght_dct[flvl]
+                probs = probs_nght_dct[flvl]
+                fd_preds = preds_2d_dct[flvl]
+                fd_probs = probs_2d_dct[flvl]
+                fd_preds[nght_idxs] = preds[nght_idxs]
+                fd_probs[nght_idxs] = probs[nght_idxs]
+
+        for flvl in flight_levels:
+            fd_preds = preds_2d_dct[flvl]
+            fd_probs = probs_2d_dct[flvl]
+            preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems))
+            probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems))
+
+        prob_s = []
+        for flvl in flight_levels:
+            probs = probs_2d_dct[flvl]
+            prob_s.append(probs)
+        prob_s = np.stack(prob_s, axis=-1)
+        max_prob = np.max(prob_s, axis=2)
+        max_prob = np.where(max_prob < 0.5, np.nan, max_prob)
+
+        make_icing_image(h5f, max_prob, None, None, clvrx_str_time, satellite, domain,
+                         ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent)
+
+        print('Done: ', clvrx_str_time)
+        h5f.close()
+