diff --git a/modules/icing/util.py b/modules/icing/util.py new file mode 100644 index 0000000000000000000000000000000000000000..944d85a13d2194196f1a13e19b06183a98a59f54 --- /dev/null +++ b/modules/icing/util.py @@ -0,0 +1,644 @@ +import numpy as np +import deeplearning.icing_fcn as icing_fcn +import deeplearning.icing_cnn as icing_cnn +from icing.pirep_goes import setup, time_filter_3 +from util.util import get_time_tuple_utc, is_day, check_oblique, homedir, write_icing_file_nc4,\ + make_for_full_domain_predict, prepare_evaluate +from util.plot import make_icing_image +from util.geos_nav import get_navigation, get_lon_lat_2d_mesh +from util.setup import model_path_day, model_path_night +from aeolus.datasource import CLAVRx, CLAVRx_VIIRS, GOESL1B, CLAVRx_H08 +import h5py +import datetime + + +def get_training_parameters(day_night='DAY', l1b_andor_l2='both'): + if day_night == 'DAY': + train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction', + 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] + + train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', + 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', + 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] + else: + train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction', + 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_acha', 'cld_opd_acha'] + + train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', + 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom'] + + if l1b_andor_l2 == 'both': + train_params = train_params_l1b + train_params_l2 + elif l1b_andor_l2 == 'l1b': + train_params = train_params_l1b + elif l1b_andor_l2 == 'l2': + train_params = train_params_l2 + + return train_params + + +flt_level_ranges = {k: None for k in range(5)} +flt_level_ranges[0] = [0.0, 2000.0] +flt_level_ranges[1] = [2000.0, 4000.0] +flt_level_ranges[2] = [4000.0, 6000.0] +flt_level_ranges[3] = [6000.0, 8000.0] +flt_level_ranges[4] = [8000.0, 15000.0] + + +def run_make_images(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', ckpt_dir_s_path='/Users/tomrink/tf_model/', prob_thresh=0.5, satellite='GOES16', domain='CONUS', + extent=[-105, -70, 15, 50], + pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv', + obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None, + use_flight_altitude=False, day_night='DAY', l1b_andor_l2='l2'): + + if pirep_file is not None: + ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file) + + if satellite == 'H08': + clvrx_ds = CLAVRx_H08(clvrx_dir) + else: + clvrx_ds = CLAVRx(clvrx_dir) + clvrx_files = clvrx_ds.flist + + alt_lo, alt_hi = 0.0, 15000.0 + if flight_level is not None: + alt_lo, alt_hi = flt_level_ranges[flight_level] + + train_params = get_training_parameters(day_night=day_night, l1b_andor_l2=l1b_andor_l2) + + for fidx, fname in enumerate(clvrx_files): + h5f = h5py.File(fname, 'r') + dto = clvrx_ds.get_datetime(fname) + ts = dto.timestamp() + clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M') + + data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain) + num_elems, num_lines = len(cc), len(ll) + + dto, _ = get_time_tuple_utc(ts) + dto_0 = dto - datetime.timedelta(minutes=30) + dto_1 = dto + datetime.timedelta(minutes=30) + ts_0 = dto_0.timestamp() + ts_1 = dto_1.timestamp() + + if pirep_file is not None: + _, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi) + elif obs_times is not None: + keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1) + keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False) + keep_lons = obs_lons[keep] + keep_lats = obs_lats[keep] + else: + keep_lons = None + keep_lats = None + + ice_lons, ice_lats, preds_2d = icing_cnn.run_evaluate_static_avg(data_dct, ll, cc, ckpt_dir_s_path=ckpt_dir_s_path, + flight_level=flight_level, prob_thresh=prob_thresh, + satellite=satellite, domain=domain, + use_flight_altitude=use_flight_altitude) + + make_icing_image(h5f, None, ice_lons, ice_lats, clvrx_str_time, satellite, domain, + ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent) + + # preds_2d_dct, probs_2d_dct = run_evaluate_static(data_dct, num_lines, num_elems, day_night=day_night, + # ckpt_dir_s_path=ckpt_dir_s_path, prob_thresh=prob_thresh, + # flight_levels=[0], + # use_flight_altitude=use_flight_altitude) + # + # make_icing_image(None, probs_2d_dct[0], None, None, clvrx_str_time, satellite, domain, + # ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent) + + h5f.close() + print('Done: ', clvrx_str_time) + + +def run_icing_predict(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir, + day_model_path=model_path_day, night_model_path=model_path_night, + prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO', + l1b_andor_l2='both', use_flight_altitude=True, res_fac=1, use_nan=False): + if use_flight_altitude is True: + flight_levels = [0, 1, 2, 3, 4] + else: + flight_levels = [0] + + day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2) + nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2) + + if day_night == 'AUTO': + train_params = list(set(day_train_params + nght_train_params)) + elif day_night == 'DAY': + train_params = day_train_params + elif day_night == 'NIGHT': + train_params = nght_train_params + + if satellite == 'H08': + clvrx_ds = CLAVRx_H08(clvrx_dir) + else: + clvrx_ds = CLAVRx(clvrx_dir) + clvrx_files = clvrx_ds.flist + + for fidx, fname in enumerate(clvrx_files): + h5f = h5py.File(fname, 'r') + dto = clvrx_ds.get_datetime(fname) + ts = dto.timestamp() + clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M') + + data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain, res_fac=res_fac) + + if fidx == 0: + num_elems = len(cc) + num_lines = len(ll) + nav = get_navigation(satellite, domain) + lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc, offset=int(8 / res_fac)) + + ancil_data_dct, _, _ = make_for_full_domain_predict(h5f, name_list= + ['solar_zenith_angle', 'sensor_zenith_angle', 'cld_height_acha', 'cld_geo_thick'], + satellite=satellite, domain=domain, res_fac=res_fac) + + satzen = ancil_data_dct['sensor_zenith_angle'] + solzen = ancil_data_dct['solar_zenith_angle'] + day_idxs = [] + nght_idxs = [] + for j in range(num_lines): + for i in range(num_elems): + k = i + j*num_elems + if not check_oblique(satzen[k]): + continue + if is_day(solzen[k]): + day_idxs.append(k) + else: + nght_idxs.append(k) + + num_tiles = num_lines * num_elems + num_day_tiles = len(day_idxs) + num_nght_tiles = len(nght_idxs) + + # initialize output arrays + probs_2d_dct = {flvl: None for flvl in flight_levels} + preds_2d_dct = {flvl: None for flvl in flight_levels} + for flvl in flight_levels: + fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8) + fd_preds[:] = -1 + fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32) + fd_probs[:] = -1.0 + preds_2d_dct[flvl] = fd_preds + probs_2d_dct[flvl] = fd_probs + + if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0: + + day_data_dct = {name: [] for name in day_train_params} + for name in day_train_params: + for k in day_idxs: + day_data_dct[name].append(data_dct[name][k]) + day_grd_dct = {name: None for name in day_train_params} + for ds_name in day_train_params: + day_grd_dct[ds_name] = np.stack(day_data_dct[ds_name]) + + preds_day_dct, probs_day_dct = icing_cnn.run_evaluate_static(day_grd_dct, num_day_tiles, day_model_path, + day_night='DAY', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh, + use_flight_altitude=use_flight_altitude, + flight_levels=flight_levels) + day_idxs = np.array(day_idxs) + for flvl in flight_levels: + day_preds = preds_day_dct[flvl] + day_probs = probs_day_dct[flvl] + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + fd_preds[day_idxs] = day_preds[:] + fd_probs[day_idxs] = day_probs[:] + + if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0: + + nght_data_dct = {name: [] for name in nght_train_params} + for name in nght_train_params: + for k in nght_idxs: + nght_data_dct[name].append(data_dct[name][k]) + nght_grd_dct = {name: None for name in nght_train_params} + for ds_name in nght_train_params: + nght_grd_dct[ds_name] = np.stack(nght_data_dct[ds_name]) + + preds_nght_dct, probs_nght_dct = icing_cnn.run_evaluate_static(nght_grd_dct, num_nght_tiles, night_model_path, + day_night='NIGHT', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh, + use_flight_altitude=use_flight_altitude, + flight_levels=flight_levels) + nght_idxs = np.array(nght_idxs) + for flvl in flight_levels: + nght_preds = preds_nght_dct[flvl] + nght_probs = probs_nght_dct[flvl] + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + fd_preds[nght_idxs] = nght_preds[:] + fd_probs[nght_idxs] = nght_probs[:] + + for flvl in flight_levels: + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems)) + probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems)) + + write_icing_file_nc4(clvrx_str_time, output_dir, preds_2d_dct, probs_2d_dct, + x_rad, y_rad, lons_2d, lats_2d, cc, ll, + satellite=satellite, domain=domain, use_nan=use_nan, prob_thresh=prob_thresh) + + print('Done: ', clvrx_str_time) + h5f.close() + + +def run_icing_predict_fcn(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir, + day_model_path=model_path_day, night_model_path=model_path_night, + prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO', + l1b_andor_l2='both', use_flight_altitude=False, res_fac=1, use_nan=False): + if use_flight_altitude is True: + flight_levels = [0, 1, 2, 3, 4] + else: + flight_levels = [0] + + day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2) + nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2) + + if day_night == 'AUTO': + train_params = list(set(day_train_params + nght_train_params)) + elif day_night == 'DAY': + train_params = day_train_params + elif day_night == 'NIGHT': + train_params = nght_train_params + + if satellite == 'H08': + clvrx_ds = CLAVRx_H08(clvrx_dir) + else: + clvrx_ds = CLAVRx(clvrx_dir) + clvrx_files = clvrx_ds.flist + + for fidx, fname in enumerate(clvrx_files): + h5f = h5py.File(fname, 'r') + dto = clvrx_ds.get_datetime(fname) + ts = dto.timestamp() + clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M') + + data_dct, solzen, satzen, ll, cc = prepare_evaluate(h5f, name_list=train_params, satellite=satellite, domain=domain, offset=8) + num_elems = len(cc) + num_lines = len(ll) + + if fidx == 0: + nav = get_navigation(satellite, domain) + lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc) + + day_idxs = solzen < 80.0 + num_day_tiles = np.sum(day_idxs) + + nght_idxs = solzen > 100.0 + num_nght_tiles = np.sum(nght_idxs) + + # initialize output arrays + probs_2d_dct = {flvl: None for flvl in flight_levels} + preds_2d_dct = {flvl: None for flvl in flight_levels} + for flvl in flight_levels: + fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8) + fd_preds[:] = -1 + fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32) + fd_probs[:] = -1.0 + preds_2d_dct[flvl] = fd_preds + probs_2d_dct[flvl] = fd_probs + + if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0: + + preds_day_dct, probs_day_dct = icing_fcn.run_evaluate_static(data_dct, 1, day_model_path, + day_night='DAY', l1b_or_l2=l1b_andor_l2, + prob_thresh=prob_thresh, + use_flight_altitude=use_flight_altitude, + flight_levels=flight_levels) + for flvl in flight_levels: + preds = preds_day_dct[flvl] + probs = probs_day_dct[flvl] + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + fd_preds[day_idxs] = preds[day_idxs] + fd_probs[day_idxs] = probs[day_idxs] + + if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0: + preds_nght_dct, probs_nght_dct = icing_fcn.run_evaluate_static_fcn(data_dct, 1, night_model_path, + day_night='NIGHT', l1b_or_l2=l1b_andor_l2, + prob_thresh=prob_thresh, + use_flight_altitude=use_flight_altitude, + flight_levels=flight_levels) + for flvl in flight_levels: + preds = preds_nght_dct[flvl] + probs = probs_nght_dct[flvl] + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + fd_preds[nght_idxs] = preds[nght_idxs] + fd_probs[nght_idxs] = probs[nght_idxs] + + for flvl in flight_levels: + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems)) + probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems)) + + write_icing_file_nc4(clvrx_str_time, output_dir, preds_2d_dct, probs_2d_dct, + x_rad, y_rad, lons_2d, lats_2d, cc, ll, + satellite=satellite, domain=domain, use_nan=use_nan, prob_thresh=prob_thresh) + + print('Done: ', clvrx_str_time) + h5f.close() + + +def run_icing_predict_image(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir, + day_model_path=model_path_day, night_model_path=model_path_night, + prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO', + l1b_andor_l2='BOTH', use_flight_altitude=True, res_fac=1, + extent=[-105, -70, 15, 50], + pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv', + obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None): + + if use_flight_altitude is True: + flight_levels = [0, 1, 2, 3, 4] + else: + flight_levels = [0] + + if pirep_file is not None: + ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file) + + alt_lo, alt_hi = 0.0, 15000.0 + if flight_level is not None: + alt_lo, alt_hi = flt_level_ranges[flight_level] + + day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2) + nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2) + + if day_night == 'AUTO': + train_params = list(set(day_train_params + nght_train_params)) + elif day_night == 'DAY': + train_params = day_train_params + elif day_night == 'NIGHT': + train_params = nght_train_params + + if satellite == 'H08': + clvrx_ds = CLAVRx_H08(clvrx_dir) + else: + clvrx_ds = CLAVRx(clvrx_dir) + clvrx_files = clvrx_ds.flist + + for fidx, fname in enumerate(clvrx_files): + h5f = h5py.File(fname, 'r') + dto = clvrx_ds.get_datetime(fname) + ts = dto.timestamp() + clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M') + + data_dct, ll, cc = make_for_full_domain_predict(h5f, name_list=train_params, satellite=satellite, domain=domain, res_fac=res_fac) + + if fidx == 0: + num_elems = len(cc) + num_lines = len(ll) + nav = get_navigation(satellite, domain) + + ancil_data_dct, _, _ = make_for_full_domain_predict(h5f, name_list= + ['solar_zenith_angle', 'sensor_zenith_angle', 'cld_height_acha', 'cld_geo_thick'], + satellite=satellite, domain=domain, res_fac=res_fac) + + satzen = ancil_data_dct['sensor_zenith_angle'] + solzen = ancil_data_dct['solar_zenith_angle'] + day_idxs = [] + nght_idxs = [] + for j in range(num_lines): + for i in range(num_elems): + k = i + j*num_elems + if not check_oblique(satzen[k]): + continue + if is_day(solzen[k]): + day_idxs.append(k) + else: + nght_idxs.append(k) + + num_tiles = num_lines * num_elems + num_day_tiles = len(day_idxs) + num_nght_tiles = len(nght_idxs) + + # initialize output arrays + probs_2d_dct = {flvl: None for flvl in flight_levels} + preds_2d_dct = {flvl: None for flvl in flight_levels} + for flvl in flight_levels: + fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8) + fd_preds[:] = -1 + fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32) + fd_probs[:] = -1.0 + preds_2d_dct[flvl] = fd_preds + probs_2d_dct[flvl] = fd_probs + + if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0: + + day_data_dct = {name: [] for name in day_train_params} + for name in day_train_params: + for k in day_idxs: + day_data_dct[name].append(data_dct[name][k]) + day_grd_dct = {name: None for name in day_train_params} + for ds_name in day_train_params: + day_grd_dct[ds_name] = np.stack(day_data_dct[ds_name]) + + preds_day_dct, probs_day_dct = icing_cnn.run_evaluate_static(day_grd_dct, num_day_tiles, day_model_path, + day_night='DAY', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh, + use_flight_altitude=use_flight_altitude, + flight_levels=flight_levels) + day_idxs = np.array(day_idxs) + for flvl in flight_levels: + day_preds = preds_day_dct[flvl] + day_probs = probs_day_dct[flvl] + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + fd_preds[day_idxs] = day_preds[:] + fd_probs[day_idxs] = day_probs[:] + + if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0: + + nght_data_dct = {name: [] for name in nght_train_params} + for name in nght_train_params: + for k in nght_idxs: + nght_data_dct[name].append(data_dct[name][k]) + nght_grd_dct = {name: None for name in nght_train_params} + for ds_name in nght_train_params: + nght_grd_dct[ds_name] = np.stack(nght_data_dct[ds_name]) + + preds_nght_dct, probs_nght_dct = icing_cnn.run_evaluate_static(nght_grd_dct, num_nght_tiles, night_model_path, + day_night='NIGHT', l1b_or_l2=l1b_andor_l2, prob_thresh=prob_thresh, + use_flight_altitude=use_flight_altitude, + flight_levels=flight_levels) + nght_idxs = np.array(nght_idxs) + for flvl in flight_levels: + nght_preds = preds_nght_dct[flvl] + nght_probs = probs_nght_dct[flvl] + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + fd_preds[nght_idxs] = nght_preds[:] + fd_probs[nght_idxs] = nght_probs[:] + + for flvl in flight_levels: + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems)) + probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems)) + + dto, _ = get_time_tuple_utc(ts) + dto_0 = dto - datetime.timedelta(minutes=30) + dto_1 = dto + datetime.timedelta(minutes=30) + ts_0 = dto_0.timestamp() + ts_1 = dto_1.timestamp() + + if pirep_file is not None: + _, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi) + elif obs_times is not None: + keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1) + keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False) + keep_lons = obs_lons[keep] + keep_lats = obs_lats[keep] + else: + keep_lons = None + keep_lats = None + + prob_s = [] + for flvl in flight_levels: + probs = probs_2d_dct[flvl] + prob_s.append(probs) + prob_s = np.stack(prob_s, axis=-1) + max_prob = np.max(prob_s, axis=2) + max_prob = np.where(max_prob < 0.5, np.nan, max_prob) + + make_icing_image(h5f, max_prob, None, None, clvrx_str_time, satellite, domain, + ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent) + + print('Done: ', clvrx_str_time) + h5f.close() + + +def run_icing_predict_image_fcn(clvrx_dir='/Users/tomrink/data/clavrx/RadC/', output_dir=homedir, + day_model_path=model_path_day, night_model_path=model_path_night, + prob_thresh=0.5, satellite='GOES16', domain='CONUS', day_night='AUTO', + l1b_andor_l2='BOTH', use_flight_altitude=True, res_fac=1, + extent=[-105, -70, 15, 50], + pirep_file='/Users/tomrink/data/pirep/pireps_202109200000_202109232359.csv', + obs_lons=None, obs_lats=None, obs_times=None, obs_alt=None, flight_level=None): + + if use_flight_altitude is True: + flight_levels = [0, 1, 2, 3, 4] + else: + flight_levels = [0] + + if pirep_file is not None: + ice_dict, no_ice_dict, neg_ice_dict = setup(pirep_file) + + alt_lo, alt_hi = 0.0, 15000.0 + if flight_level is not None: + alt_lo, alt_hi = flt_level_ranges[flight_level] + + day_train_params = get_training_parameters(day_night='DAY', l1b_andor_l2=l1b_andor_l2) + nght_train_params = get_training_parameters(day_night='NIGHT', l1b_andor_l2=l1b_andor_l2) + + if day_night == 'AUTO': + train_params = list(set(day_train_params + nght_train_params)) + elif day_night == 'DAY': + train_params = day_train_params + elif day_night == 'NIGHT': + train_params = nght_train_params + + if satellite == 'H08': + clvrx_ds = CLAVRx_H08(clvrx_dir) + else: + clvrx_ds = CLAVRx(clvrx_dir) + clvrx_files = clvrx_ds.flist + + for fidx, fname in enumerate(clvrx_files): + h5f = h5py.File(fname, 'r') + dto = clvrx_ds.get_datetime(fname) + ts = dto.timestamp() + clvrx_str_time = dto.strftime('%Y-%m-%d_%H:%M') + + dto, _ = get_time_tuple_utc(ts) + dto_0 = dto - datetime.timedelta(minutes=30) + dto_1 = dto + datetime.timedelta(minutes=30) + ts_0 = dto_0.timestamp() + ts_1 = dto_1.timestamp() + + if pirep_file is not None: + _, keep_lons, keep_lats, _ = time_filter_3(ice_dict, ts_0, ts_1, alt_lo, alt_hi) + elif obs_times is not None: + keep = np.logical_and(obs_times >= ts_0, obs_times < ts_1) + keep = np.where(keep, np.logical_and(obs_alt >= alt_lo, obs_alt < alt_hi), False) + keep_lons = obs_lons[keep] + keep_lats = obs_lats[keep] + else: + keep_lons = None + keep_lats = None + + data_dct, solzen, satzen, ll, cc = prepare_evaluate(h5f, name_list=train_params, satellite=satellite, domain=domain, offset=8) + num_elems = len(cc) + num_lines = len(ll) + + if fidx == 0: + nav = get_navigation(satellite, domain) + lons_2d, lats_2d, x_rad, y_rad = get_lon_lat_2d_mesh(nav, ll, cc) + + day_idxs = solzen < 80.0 + num_day_tiles = np.sum(day_idxs) + + nght_idxs = solzen > 100.0 + num_nght_tiles = np.sum(nght_idxs) + + # initialize output arrays + probs_2d_dct = {flvl: None for flvl in flight_levels} + preds_2d_dct = {flvl: None for flvl in flight_levels} + for flvl in flight_levels: + fd_preds = np.zeros(num_lines * num_elems, dtype=np.int8) + fd_preds[:] = -1 + fd_probs = np.zeros(num_lines * num_elems, dtype=np.float32) + fd_probs[:] = -1.0 + preds_2d_dct[flvl] = fd_preds + probs_2d_dct[flvl] = fd_probs + + if (day_night == 'AUTO' or day_night == 'DAY') and num_day_tiles > 0: + + preds_day_dct, probs_day_dct = icing_fcn.run_evaluate_static(data_dct, day_model_path, + day_night='DAY', l1b_or_l2=l1b_andor_l2, + prob_thresh=prob_thresh, + use_flight_altitude=use_flight_altitude, + flight_levels=flight_levels) + for flvl in flight_levels: + preds = preds_day_dct[flvl] + probs = probs_day_dct[flvl] + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + fd_preds[day_idxs] = preds[day_idxs] + fd_probs[day_idxs] = probs[day_idxs] + + if (day_night == 'AUTO' or day_night == 'NIGHT') and num_nght_tiles > 0: + preds_nght_dct, probs_nght_dct = icing_fcn.run_evaluate_static_fcn(data_dct, night_model_path, + day_night='NIGHT', l1b_or_l2=l1b_andor_l2, + prob_thresh=prob_thresh, + use_flight_altitude=use_flight_altitude, + flight_levels=flight_levels) + for flvl in flight_levels: + preds = preds_nght_dct[flvl] + probs = probs_nght_dct[flvl] + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + fd_preds[nght_idxs] = preds[nght_idxs] + fd_probs[nght_idxs] = probs[nght_idxs] + + for flvl in flight_levels: + fd_preds = preds_2d_dct[flvl] + fd_probs = probs_2d_dct[flvl] + preds_2d_dct[flvl] = fd_preds.reshape((num_lines, num_elems)) + probs_2d_dct[flvl] = fd_probs.reshape((num_lines, num_elems)) + + prob_s = [] + for flvl in flight_levels: + probs = probs_2d_dct[flvl] + prob_s.append(probs) + prob_s = np.stack(prob_s, axis=-1) + max_prob = np.max(prob_s, axis=2) + max_prob = np.where(max_prob < 0.5, np.nan, max_prob) + + make_icing_image(h5f, max_prob, None, None, clvrx_str_time, satellite, domain, + ice_lons_vld=keep_lons, ice_lats_vld=keep_lats, extent=extent) + + print('Done: ', clvrx_str_time) + h5f.close() +