From 578ac0242a16827bd3432fda275d8b3120ebca37 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Wed, 10 Aug 2022 12:55:31 -0500 Subject: [PATCH] minor --- modules/deeplearning/espcn.py | 41 +---------------------------------- 1 file changed, 1 insertion(+), 40 deletions(-) diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py index e2137478..40dce3c3 100644 --- a/modules/deeplearning/espcn.py +++ b/modules/deeplearning/espcn.py @@ -72,38 +72,6 @@ def build_conv2d_block(conv, num_filters, block_name, activation=tf.nn.leaky_rel return conv -# def build_residual_block_1x1(input_layer, num_filters, activation, block_name, padding='SAME', drop_rate=0.5, -# do_drop_out=True, do_batch_norm=True): -# -# with tf.name_scope(block_name): -# skip = input_layer -# if do_drop_out: -# input_layer = tf.keras.layers.Dropout(drop_rate)(input_layer) -# if do_batch_norm: -# input_layer = tf.keras.layers.BatchNormalization()(input_layer) -# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=1, strides=1, padding=padding, activation=activation)(input_layer) -# print(conv.shape) -# -# # if do_drop_out: -# # conv = tf.keras.layers.Dropout(drop_rate)(conv) -# # if do_batch_norm: -# # conv = tf.keras.layers.BatchNormalization()(conv) -# # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=1, strides=1, padding=padding, activation=activation)(conv) -# # print(conv.shape) -# -# if do_drop_out: -# conv = tf.keras.layers.Dropout(drop_rate)(conv) -# if do_batch_norm: -# conv = tf.keras.layers.BatchNormalization()(conv) -# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=1, strides=1, padding=padding, activation=None)(conv) -# -# conv = conv + skip -# conv = tf.keras.layers.LeakyReLU()(conv) -# print(conv.shape) -# -# return conv - - class ESPCN: def __init__(self): @@ -204,12 +172,10 @@ class ESPCN: self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) - self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans)) + # self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans)) self.inputs.append(self.X_img) - self.DISK_CACHE = False - tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) def get_in_mem_data_batch(self, idxs, is_training): @@ -652,11 +618,6 @@ class ESPCN: ckpt_manager.save() - if self.DISK_CACHE and epoch == 0: - f = open(cachepath, 'wb') - pickle.dump(self.in_mem_data_cache, f) - f.close() - if EARLY_STOP and es.check_stop(tst_loss): break -- GitLab