diff --git a/modules/deeplearning/icing.py b/modules/deeplearning/icing.py index f04c4321643c6931b7cd3205cda08fdbb8d189d8..728c6bd07c345a4eded37e79582049d59d984de4 100644 --- a/modules/deeplearning/icing.py +++ b/modules/deeplearning/icing.py @@ -1,41 +1,57 @@ import tensorflow as tf -from util.setup import logdir, modeldir, cachepath -from util.util import homedir -import subprocess +import tensorflow_addons as tfa +from util.setup import logdir, modeldir, cachepath, now +from util.util import homedir, EarlyStop +from util.geos_nav import GEOSNavigation import os, datetime import numpy as np import pickle import h5py -from icing.pirep_goes import split_data, normalize +from icing.pirep_goes import normalize, make_for_full_domain_predict LOG_DEVICE_PLACEMENT = False -CACHE_DATA_IN_MEM = True +CACHE_DATA_IN_MEM = False -PROC_BATCH_SIZE = 10240 +PROC_BATCH_SIZE = 4096 PROC_BATCH_BUFFER_SIZE = 50000 -NumLabels = 1 -BATCH_SIZE = 256 -NUM_EPOCHS = 200 -TRACK_MOVING_AVERAGE = False +NumClasses = 2 +if NumClasses == 2: + NumLogits = 1 +else: + NumLogits = NumClasses + +BATCH_SIZE = 128 +NUM_EPOCHS = 100 +TRACK_MOVING_AVERAGE = False +EARLY_STOP = False TRIPLET = False CONV3D = False +NOISE_TRAINING = False + img_width = 16 -mean_std_file = homedir+'data/icing/fovs_mean_std_day.pkl' +mean_std_file = homedir+'data/icing/mean_std_no_ice.pkl' +# mean_std_file = homedir+'data/icing/mean_std_l1b_no_ice.pkl' f = open(mean_std_file, 'rb') mean_std_dct = pickle.load(f) f.close() +# train_params = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha', +# 'cld_reff_acha', 'cld_opd_acha', 'conv_cloud_fraction', 'cld_emiss_acha'] train_params = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha', - 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp'] - #'cloud_phase'] + 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp', 'conv_cloud_fraction', 'cld_emiss_acha'] +# train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', +# 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', +# 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] +# train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', +# 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom'] def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True): @@ -89,6 +105,7 @@ class IcingIntensityNN: self.train_dataset = None self.inner_train_dataset = None self.test_dataset = None + self.eval_dataset = None self.X_img = None self.X_prof = None self.X_u = None @@ -99,8 +116,10 @@ class IcingIntensityNN: self.handle = None self.inner_handle = None self.in_mem_batch = None - self.filename = None - self.h5f = None + self.filename_trn = None + self.h5f_trn = None + self.filename_tst = None + self.h5f_tst = None self.h5f_l1b = None self.logits = None @@ -142,22 +161,28 @@ class IcingIntensityNN: self.test_auc = None self.test_recall = None self.test_precision = None + self.test_confusion_matrix = None + self.test_true_pos = None + self.test_true_neg = None + self.test_false_pos = None + self.test_false_neg = None + + self.test_labels = [] + self.test_preds = [] + self.test_probs = None self.learningRateSchedule = None self.num_data_samples = None self.initial_learning_rate = None + self.data_dct = None + n_chans = len(train_params) - NUM_PARAMS = 1 if TRIPLET: n_chans *= 3 - #self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans)) self.X_img = tf.keras.Input(shape=n_chans) - #self.X_prof = tf.keras.Input(shape=(NUM_VERT_LEVELS, NUM_VERT_PARAMS)) - #self.X_sfc = tf.keras.Input(shape=2) self.inputs.append(self.X_img) - #self.inputs.append(self.X_prof) self.DISK_CACHE = False @@ -181,7 +206,11 @@ class IcingIntensityNN: # Memory growth must be set before GPUs have been initialized print(e) - def get_in_mem_data_batch(self, idxs): + def get_in_mem_data_batch(self, idxs, is_training): + h5f = self.h5f_trn + if not is_training: + h5f = self.h5f_tst + key = frozenset(idxs) if CACHE_DATA_IN_MEM: @@ -195,29 +224,69 @@ class IcingIntensityNN: data = [] for param in train_params: - nda = self.h5f[param][nd_idxs, ] - nda = normalize(nda, param, mean_std_dct) + nda = h5f[param][nd_idxs, ] + if NOISE_TRAINING and is_training: + nda = normalize(nda, param, mean_std_dct, add_noise=True, noise_scale=0.01, seed=42) + else: + nda = normalize(nda, param, mean_std_dct) data.append(nda) data = np.stack(data) data = data.astype(np.float32) data = np.transpose(data, axes=(1, 0)) - label = self.h5f['icing_intensity'][nd_idxs] + label = h5f['icing_intensity'][nd_idxs] label = label.astype(np.int32) label = np.where(label == -1, 0, label) # binary, two class - label = np.where(label != 0, 1, label) - label = label.reshape((label.shape[0], 1)) + if NumClasses == 2: + label = np.where(label != 0, 1, label) + label = label.reshape((label.shape[0], 1)) + elif NumClasses == 3: + label = np.where(np.logical_or(label == 1, label == 2), 1, label) + label = np.where(np.invert(np.logical_or(label == 0, label == 1)), 2, label) + label = label.reshape((label.shape[0], 1)) if CACHE_DATA_IN_MEM: self.in_mem_data_cache[key] = (data, label) return data, label + def get_in_mem_data_batch_train(self, idxs): + return self.get_in_mem_data_batch(idxs, True) + + def get_in_mem_data_batch_test(self, idxs): + return self.get_in_mem_data_batch(idxs, False) + + def get_in_mem_data_batch_eval(self, idxs): + # sort these to use as numpy indexing arrays + nd_idxs = np.array(idxs) + nd_idxs = np.sort(nd_idxs) + + data = [] + for param in train_params: + nda = self.data_dct[param][nd_idxs, ] + nda = normalize(nda, param, mean_std_dct) + data.append(nda) + data = np.stack(data) + data = data.astype(np.float32) + data = np.transpose(data, axes=(1,0)) + + return data + @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function(self, indexes): - out = tf.numpy_function(self.get_in_mem_data_batch, [indexes], [tf.float32, tf.int32]) + out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.int32]) + return out + + @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) + def data_function_test(self, indexes): + out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.int32]) + return out + + @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) + def data_function_evaluate(self, indexes): + out = tf.numpy_function(self.get_in_mem_data_batch_eval, [indexes], tf.float32) return out def get_train_dataset(self, indexes): @@ -226,7 +295,8 @@ class IcingIntensityNN: dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) dataset = dataset.map(self.data_function, num_parallel_calls=8) - dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) + dataset = dataset.cache() + # dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) dataset = dataset.prefetch(buffer_size=1) self.train_dataset = dataset @@ -235,15 +305,39 @@ class IcingIntensityNN: dataset = tf.data.Dataset.from_tensor_slices(indexes) dataset = dataset.batch(PROC_BATCH_SIZE) - dataset = dataset.map(self.data_function, num_parallel_calls=8) + dataset = dataset.map(self.data_function_test, num_parallel_calls=8) + dataset = dataset.cache() self.test_dataset = dataset - def setup_pipeline(self, filename, train_idxs=None, test_idxs=None): - self.filename = filename - self.h5f = h5py.File(filename, 'r') - time = self.h5f['time'] - num_obs = time.shape[0] - trn_idxs, tst_idxs = split_data(num_obs, skip=4) + def get_evaluate_dataset(self, indexes): + indexes = list(indexes) + + dataset = tf.data.Dataset.from_tensor_slices(indexes) + dataset = dataset.batch(PROC_BATCH_SIZE) + dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8) + dataset = dataset.cache() + self.eval_dataset = dataset + + def setup_pipeline(self, filename_trn, filename_tst, trn_idxs=None, tst_idxs=None, seed=None): + self.filename_trn = filename_trn + self.h5f_trn = h5py.File(filename_trn, 'r') + + self.filename_tst = filename_tst + self.h5f_tst = h5py.File(filename_tst, 'r') + + if trn_idxs is None: + time = self.h5f_trn['time'] + trn_idxs = np.arange(time.shape[0]) + if seed is not None: + np.random.seed(seed) + np.random.shuffle(trn_idxs) + + time = self.h5f_tst['time'] + tst_idxs = np.arange(time.shape[0]) + if seed is not None: + np.random.seed(seed) + np.random.shuffle(tst_idxs) + self.num_data_samples = trn_idxs.shape[0] self.get_train_dataset(trn_idxs) @@ -254,6 +348,30 @@ class IcingIntensityNN: print('num test samples: ', tst_idxs.shape[0]) print('setup_pipeline: Done') + def setup_test_pipeline(self, filename, seed=None, shuffle=False): + self.filename_tst = filename + self.h5f_tst = h5py.File(filename, 'r') + + time = self.h5f_tst['time'] + tst_idxs = np.arange(time.shape[0]) + self.num_data_samples = len(tst_idxs) + if seed is not None: + np.random.seed(seed) + if shuffle: + np.random.shuffle(tst_idxs) + + self.get_test_dataset(tst_idxs) + + print('num test samples: ', tst_idxs.shape[0]) + print('setup_test_pipeline: Done') + + def setup_eval_pipeline(self, data_dct, num_tiles): + self.data_dct = data_dct + idxs = np.arange(num_tiles) + self.num_data_samples = idxs.shape[0] + + self.get_evaluate_dataset(idxs) + def build_1d_cnn(self): print('build_1d_cnn') # padding = 'VALID' @@ -319,63 +437,66 @@ class IcingIntensityNN: fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_6', doBatchNorm=True) - fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_7', doBatchNorm=True) - - fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_8', doBatchNorm=True) + # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_7', doBatchNorm=True) + # + # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_8', doBatchNorm=True) fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc) fc = tf.keras.layers.BatchNormalization()(fc) print(fc.shape) - # activation = tf.nn.softmax - activation = tf.nn.sigmoid # For binary + if NumClasses == 2: + activation = tf.nn.sigmoid # For binary + else: + activation = tf.nn.softmax # For multi-class - logits = tf.keras.layers.Dense(NumLabels, activation=activation)(fc) + # Called logits, but these are actually probabilities, see activation + logits = tf.keras.layers.Dense(NumLogits, activation=activation)(fc) print(logits.shape) self.logits = logits def build_training(self): - self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only - #self.loss = tf.keras.losses.SparseCategoricalCrossentropy() # For multi-class + if NumClasses == 2: + self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only + else: + self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) initial_learning_rate = 0.002 decay_rate = 0.95 steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch # decay_steps = int(steps_per_epoch / 2) - decay_steps = 4 * steps_per_epoch + decay_steps = 8 * steps_per_epoch print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) - if TRACK_MOVING_AVERAGE: - ema = tf.train.ExponentialMovingAverage(decay=0.999) - - with tf.control_dependencies([optimizer]): - optimizer = ema.apply(self.model.trainable_variables) + if TRACK_MOVING_AVERAGE: # Not really sure this works properly + optimizer = tfa.optimizers.MovingAverage(optimizer) self.optimizer = optimizer self.initial_learning_rate = initial_learning_rate def build_evaluation(self): - self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy') - self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy') - self.test_auc = tf.keras.metrics.AUC(name='test_auc') - self.test_recall = tf.keras.metrics.Recall(name='test_recall') - self.test_precision = tf.keras.metrics.Precision(name='test_precision') self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss') - def build_predict(self): - _, pred = tf.nn.top_k(self.logits) - self.pred_class = pred - - if TRACK_MOVING_AVERAGE: - self.variable_averages = tf.train.ExponentialMovingAverage(0.999, self.global_step) - self.variable_averages.apply(self.model.trainable_variables) + if NumClasses == 2: + self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy') + self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy') + self.test_auc = tf.keras.metrics.AUC(name='test_auc') + self.test_recall = tf.keras.metrics.Recall(name='test_recall') + self.test_precision = tf.keras.metrics.Precision(name='test_precision') + self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg') + self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos') + self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg') + self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos') + else: + self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') + self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') @tf.function def train_step(self, mini_batch): @@ -405,9 +526,14 @@ class IcingIntensityNN: self.test_loss(t_loss) self.test_accuracy(labels, pred) - self.test_auc(labels, pred) - self.test_recall(labels, pred) - self.test_precision(labels, pred) + if NumClasses == 2: + self.test_auc(labels, pred) + self.test_recall(labels, pred) + self.test_precision(labels, pred) + self.test_true_neg(labels, pred) + self.test_true_pos(labels, pred) + self.test_false_neg(labels, pred) + self.test_false_pos(labels, pred) def predict(self, mini_batch): inputs = [mini_batch[0]] @@ -415,6 +541,45 @@ class IcingIntensityNN: pred = self.model(inputs, training=False) t_loss = self.loss(labels, pred) + self.test_labels.append(labels) + self.test_preds.append(pred.numpy()) + + self.test_loss(t_loss) + self.test_accuracy(labels, pred) + if NumClasses == 2: + self.test_auc(labels, pred) + self.test_recall(labels, pred) + self.test_precision(labels, pred) + self.test_true_neg(labels, pred) + self.test_true_pos(labels, pred) + self.test_false_neg(labels, pred) + self.test_false_pos(labels, pred) + + def reset_test_metrics(self): + self.test_loss.reset_states() + self.test_accuracy.reset_states() + if NumClasses == 2: + self.test_auc.reset_states() + self.test_recall.reset_states() + self.test_precision.reset_states() + self.test_true_neg.reset_states() + self.test_true_pos.reset_states() + self.test_false_neg.reset_states() + self.test_false_pos.reset_states() + + def get_metrics(self): + recall = self.test_recall.result() + precsn = self.test_precision.result() + f1 = 2 * (precsn * recall) / (precsn + recall) + + tn = self.test_true_neg.result() + tp = self.test_true_pos.result() + fn = self.test_false_neg.result() + fp = self.test_false_pos.result() + + mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) + return f1, mcc + def do_training(self, ckpt_dir=None): if ckpt_dir is None: @@ -431,6 +596,16 @@ class IcingIntensityNN: step = 0 total_time = 0 + best_test_loss = np.finfo(dtype=np.float).max + best_test_acc = 0 + best_test_recall = 0 + best_test_precision = 0 + best_test_auc = 0 + best_test_f1 = 0 + best_test_mcc = 0 + + if EARLY_STOP: + es = EarlyStop() for epoch in range(NUM_EPOCHS): self.train_loss.reset_states() @@ -455,20 +630,27 @@ class IcingIntensityNN: tf.summary.scalar('num_train_steps', step, step=step) tf.summary.scalar('num_epochs', epoch, step=step) - self.test_loss.reset_states() - self.test_accuracy.reset_states() - + self.reset_test_metrics() for data0_tst, label_tst in self.test_dataset: tst_ds = tf.data.Dataset.from_tensor_slices((data0_tst, label_tst)) tst_ds = tst_ds.batch(BATCH_SIZE) for mini_batch_test in tst_ds: self.test_step(mini_batch_test) + if NumClasses == 2: + f1, mcc = self.get_metrics() + with self.writer_valid.as_default(): tf.summary.scalar('loss_val', self.test_loss.result(), step=step) tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) - tf.summary.scalar('num_train_steps', step, step=step) - tf.summary.scalar('num_epochs', epoch, step=step) + if NumClasses == 2: + tf.summary.scalar('auc_val', self.test_auc.result(), step=step) + tf.summary.scalar('recall_val', self.test_recall.result(), step=step) + tf.summary.scalar('prec_val', self.test_precision.result(), step=step) + tf.summary.scalar('f1_val', f1, step=step) + tf.summary.scalar('mcc_val', mcc, step=step) + tf.summary.scalar('num_train_steps', step, step=step) + tf.summary.scalar('num_epochs', epoch, step=step) print('****** test loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) @@ -483,33 +665,56 @@ class IcingIntensityNN: print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) total_time += (t1-t0) - self.test_loss.reset_states() - self.test_accuracy.reset_states() + self.reset_test_metrics() for data0, label in self.test_dataset: ds = tf.data.Dataset.from_tensor_slices((data0, label)) ds = ds.batch(BATCH_SIZE) for mini_batch in ds: self.test_step(mini_batch) - print('loss, acc : ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) - print('---------------------------------------------------------') - ckpt_manager.save() + if NumClasses == 2: + f1, mcc = self.get_metrics() + print('loss, acc, recall, precision, auc, f1, mcc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), + self.test_recall.result().numpy(), self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy()) + else: + print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) + print('------------------------------------------------------') + + if TRACK_MOVING_AVERAGE: # This may not really work properly + self.optimizer.assign_average_vars(self.model.trainable_variables) + + tst_loss = self.test_loss.result().numpy() + if tst_loss < best_test_loss: + best_test_loss = tst_loss + best_test_acc = self.test_accuracy.result().numpy() + best_test_recall = self.test_recall.result().numpy() + best_test_precision = self.test_precision.result().numpy() + best_test_auc = self.test_auc.result().numpy() + best_test_f1 = f1.numpy() + best_test_mcc = mcc.numpy() + + ckpt_manager.save() if self.DISK_CACHE and epoch == 0: f = open(cachepath, 'wb') pickle.dump(self.in_mem_data_cache, f) f.close() + if EARLY_STOP and es.check_stop(tst_loss): + break + print('total time: ', total_time) self.writer_train.close() self.writer_valid.close() + self.h5f_trn.close() + self.h5f_tst.close() + + f = open('/home/rink/best_stats_'+now+'.pkl', 'wb') + pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f) + f.close() + def build_model(self): - # flat = self.build_cnn() - # flat_1d = self.build_1d_cnn() - # flat = tf.keras.layers.concatenate([flat, flat_1d, flat_anc]) - # flat = tf.keras.layers.concatenate([flat, flat_1d]) - # self.build_dnn(flat) self.build_dnn() self.model = tf.keras.Model(self.inputs, self.logits) @@ -523,27 +728,140 @@ class IcingIntensityNN: self.test_loss.reset_states() self.test_accuracy.reset_states() - for abi_tst, temp_tst, lbfp_tst in self.test_dataset: - ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst)) + for data0, label in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((data0, label)) ds = ds.batch(BATCH_SIZE) for mini_batch_test in ds: self.predict(mini_batch_test) print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result()) - def run(self, filename, filename_l1b=None, train_dict=None, valid_dict=None): + labels = np.concatenate(self.test_labels) + self.test_labels = labels + + preds = np.concatenate(self.test_preds) + self.test_probs = preds + + if NumClasses == 2: + preds = np.where(preds > 0.5, 1, 0) + else: + preds = np.argmax(preds, axis=1) + + self.test_preds = preds + + def do_evaluate(self, ckpt_dir, prob_thresh=0.5): + + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + + ckpt.restore(ckpt_manager.latest_checkpoint) + + pred_s = [] + for data in self.eval_dataset: + ds = tf.data.Dataset.from_tensor_slices(data) + ds = ds.batch(BATCH_SIZE) + for mini_batch in ds: + pred = self.model([mini_batch], training=False) + pred_s.append(pred) + + preds = np.concatenate(pred_s) + preds = preds[:,0] + self.test_probs = preds + + if NumClasses == 2: + preds = np.where(preds > prob_thresh, 1, 0) + else: + preds = np.argmax(preds, axis=1) + self.test_preds = preds + + def run(self, filename_trn, filename_tst): with tf.device('/device:GPU:'+str(self.gpu_device)): - self.setup_pipeline(filename, train_idxs=train_dict, test_idxs=valid_dict) + self.setup_pipeline(filename_trn, filename_tst) self.build_model() self.build_training() self.build_evaluation() self.do_training() - def run_restore(self, matchup_dict, ckpt_dir): - self.setup_pipeline(None, None, matchup_dict) + def run_restore(self, filename_tst, ckpt_dir): + self.setup_test_pipeline(filename_tst) self.build_model() self.build_training() self.build_evaluation() self.restore(ckpt_dir) + self.h5f_tst.close() + + def run_evaluate(self, filename, ckpt_dir): + data_dct, ll, cc = make_for_full_domain_predict(filename, name_list=train_params) + self.setup_eval_pipeline(data_dct, len(ll)) + self.build_model() + self.build_training() + self.build_evaluation() + self.do_evaluate(ckpt_dir) + + +def run_restore_static(filename_tst, ckpt_dir_s_path): + ckpt_dir_s = os.listdir(ckpt_dir_s_path) + cm_s = [] + for ckpt in ckpt_dir_s: + ckpt_dir = ckpt_dir_s_path + ckpt + if not os.path.isdir(ckpt_dir): + continue + nn = IcingIntensityNN() + nn.run_restore(filename_tst, ckpt_dir) + cm_s.append(tf.math.confusion_matrix(nn.test_labels.flatten(), nn.test_preds.flatten())) + num = len(cm_s) + cm_avg = cm_s[0] + for k in range(num-1): + cm_avg += cm_s[k+1] + cm_avg /= num + + return cm_avg + + +def run_evaluate_static(filename, ckpt_dir_s_path, prob_thresh=0.5): + data_dct, ll, cc = make_for_full_domain_predict(filename, name_list=train_params) + ckpt_dir_s = os.listdir(ckpt_dir_s_path) + prob_s = [] + for ckpt in ckpt_dir_s: + ckpt_dir = ckpt_dir_s_path + ckpt + if not os.path.isdir(ckpt_dir): + continue + nn = IcingIntensityNN() + nn.setup_eval_pipeline(data_dct, len(ll)) + nn.build_model() + nn.build_training() + nn.build_evaluation() + nn.do_evaluate(ckpt_dir, ll, cc) + prob_s.append(nn.test_probs) + num = len(prob_s) + prob_avg = prob_s[0] + for k in range(num-1): + prob_avg += prob_s[k+1] + prob_avg /= num + probs = prob_avg + + if NumClasses == 2: + preds = np.where(probs > prob_thresh, 1, 0) + else: + preds = np.argmax(probs, axis=1) + + cc = np.array(cc) + ll = np.array(ll) + ice_mask = preds == 1 + print(cc.shape, ll.shape, ice_mask.shape) + ice_cc = cc[ice_mask] + ice_ll = ll[ice_mask] + + nav = GEOSNavigation(sub_lon=-75.0, CFAC=5.6E-05, COFF=-0.101332, LFAC=-5.6E-05, LOFF=0.128212, num_elems=2500, + num_lines=1500) + + ice_lons = [] + ice_lats = [] + for k in range(ice_cc.shape[0]): + lon, lat = nav.lc_to_earth(ice_cc[k], ice_ll[k]) + ice_lons.append(lon) + ice_lats.append(lat) + + return filename, ice_lons, ice_lats if __name__ == "__main__":