diff --git a/modules/deeplearning/icing.py b/modules/deeplearning/icing.py
index f04c4321643c6931b7cd3205cda08fdbb8d189d8..728c6bd07c345a4eded37e79582049d59d984de4 100644
--- a/modules/deeplearning/icing.py
+++ b/modules/deeplearning/icing.py
@@ -1,41 +1,57 @@
 import tensorflow as tf
-from util.setup import logdir, modeldir, cachepath
-from util.util import homedir
-import subprocess
+import tensorflow_addons as tfa
+from util.setup import logdir, modeldir, cachepath, now
+from util.util import homedir, EarlyStop
+from util.geos_nav import GEOSNavigation
 
 import os, datetime
 import numpy as np
 import pickle
 import h5py
 
-from icing.pirep_goes import split_data, normalize
+from icing.pirep_goes import normalize, make_for_full_domain_predict
 
 LOG_DEVICE_PLACEMENT = False
 
-CACHE_DATA_IN_MEM = True
+CACHE_DATA_IN_MEM = False
 
-PROC_BATCH_SIZE = 10240
+PROC_BATCH_SIZE = 4096
 PROC_BATCH_BUFFER_SIZE = 50000
-NumLabels = 1
-BATCH_SIZE = 256
-NUM_EPOCHS = 200
 
-TRACK_MOVING_AVERAGE = False
+NumClasses = 2
+if NumClasses == 2:
+    NumLogits = 1
+else:
+    NumLogits = NumClasses
+
+BATCH_SIZE = 128
+NUM_EPOCHS = 100
 
+TRACK_MOVING_AVERAGE = False
+EARLY_STOP = False
 
 TRIPLET = False
 CONV3D = False
 
+NOISE_TRAINING = False
+
 img_width = 16
 
-mean_std_file = homedir+'data/icing/fovs_mean_std_day.pkl'
+mean_std_file = homedir+'data/icing/mean_std_no_ice.pkl'
+# mean_std_file = homedir+'data/icing/mean_std_l1b_no_ice.pkl'
 f = open(mean_std_file, 'rb')
 mean_std_dct = pickle.load(f)
 f.close()
 
+# train_params = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha',
+#                 'cld_reff_acha', 'cld_opd_acha', 'conv_cloud_fraction', 'cld_emiss_acha']
 train_params = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha',
-                'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp']
-                    #'cloud_phase']
+                'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp', 'conv_cloud_fraction', 'cld_emiss_acha']
+# train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
+#                 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
+#                 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
+# train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
+#                 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom']
 
 
 def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True):
@@ -89,6 +105,7 @@ class IcingIntensityNN:
         self.train_dataset = None
         self.inner_train_dataset = None
         self.test_dataset = None
+        self.eval_dataset = None
         self.X_img = None
         self.X_prof = None
         self.X_u = None
@@ -99,8 +116,10 @@ class IcingIntensityNN:
         self.handle = None
         self.inner_handle = None
         self.in_mem_batch = None
-        self.filename = None
-        self.h5f = None
+        self.filename_trn = None
+        self.h5f_trn = None
+        self.filename_tst = None
+        self.h5f_tst = None
         self.h5f_l1b = None
 
         self.logits = None
@@ -142,22 +161,28 @@ class IcingIntensityNN:
         self.test_auc = None
         self.test_recall = None
         self.test_precision = None
+        self.test_confusion_matrix = None
+        self.test_true_pos = None
+        self.test_true_neg = None
+        self.test_false_pos = None
+        self.test_false_neg = None
+
+        self.test_labels = []
+        self.test_preds = []
+        self.test_probs = None
 
         self.learningRateSchedule = None
         self.num_data_samples = None
         self.initial_learning_rate = None
 
+        self.data_dct = None
+
         n_chans = len(train_params)
-        NUM_PARAMS = 1
         if TRIPLET:
             n_chans *= 3
-        #self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans))
         self.X_img = tf.keras.Input(shape=n_chans)
-        #self.X_prof = tf.keras.Input(shape=(NUM_VERT_LEVELS, NUM_VERT_PARAMS))
-        #self.X_sfc = tf.keras.Input(shape=2)
 
         self.inputs.append(self.X_img)
-        #self.inputs.append(self.X_prof)
 
         self.DISK_CACHE = False
 
@@ -181,7 +206,11 @@ class IcingIntensityNN:
                 # Memory growth must be set before GPUs have been initialized
                 print(e)
 
-    def get_in_mem_data_batch(self, idxs):
+    def get_in_mem_data_batch(self, idxs, is_training):
+        h5f = self.h5f_trn
+        if not is_training:
+            h5f = self.h5f_tst
+
         key = frozenset(idxs)
 
         if CACHE_DATA_IN_MEM:
@@ -195,29 +224,69 @@ class IcingIntensityNN:
 
         data = []
         for param in train_params:
-            nda = self.h5f[param][nd_idxs, ]
-            nda = normalize(nda, param, mean_std_dct)
+            nda = h5f[param][nd_idxs, ]
+            if NOISE_TRAINING and is_training:
+                nda = normalize(nda, param, mean_std_dct, add_noise=True, noise_scale=0.01, seed=42)
+            else:
+                nda = normalize(nda, param, mean_std_dct)
             data.append(nda)
         data = np.stack(data)
         data = data.astype(np.float32)
         data = np.transpose(data, axes=(1, 0))
 
-        label = self.h5f['icing_intensity'][nd_idxs]
+        label = h5f['icing_intensity'][nd_idxs]
         label = label.astype(np.int32)
         label = np.where(label == -1, 0, label)
 
         # binary, two class
-        label = np.where(label != 0, 1, label)
-        label = label.reshape((label.shape[0], 1))
+        if NumClasses == 2:
+            label = np.where(label != 0, 1, label)
+            label = label.reshape((label.shape[0], 1))
+        elif NumClasses == 3:
+            label = np.where(np.logical_or(label == 1, label == 2), 1, label)
+            label = np.where(np.invert(np.logical_or(label == 0, label == 1)), 2, label)
+            label = label.reshape((label.shape[0], 1))
 
         if CACHE_DATA_IN_MEM:
             self.in_mem_data_cache[key] = (data, label)
 
         return data, label
 
+    def get_in_mem_data_batch_train(self, idxs):
+        return self.get_in_mem_data_batch(idxs, True)
+
+    def get_in_mem_data_batch_test(self, idxs):
+        return self.get_in_mem_data_batch(idxs, False)
+
+    def get_in_mem_data_batch_eval(self, idxs):
+        # sort these to use as numpy indexing arrays
+        nd_idxs = np.array(idxs)
+        nd_idxs = np.sort(nd_idxs)
+
+        data = []
+        for param in train_params:
+            nda = self.data_dct[param][nd_idxs, ]
+            nda = normalize(nda, param, mean_std_dct)
+            data.append(nda)
+        data = np.stack(data)
+        data = data.astype(np.float32)
+        data = np.transpose(data, axes=(1,0))
+
+        return data
+
     @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
     def data_function(self, indexes):
-        out = tf.numpy_function(self.get_in_mem_data_batch, [indexes], [tf.float32, tf.int32])
+        out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.int32])
+        return out
+
+    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
+    def data_function_test(self, indexes):
+        out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.int32])
+        return out
+
+    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
+    def data_function_evaluate(self, indexes):
+        out = tf.numpy_function(self.get_in_mem_data_batch_eval, [indexes], tf.float32)
         return out
 
     def get_train_dataset(self, indexes):
@@ -226,7 +295,8 @@ class IcingIntensityNN:
         dataset = tf.data.Dataset.from_tensor_slices(indexes)
         dataset = dataset.batch(PROC_BATCH_SIZE)
         dataset = dataset.map(self.data_function, num_parallel_calls=8)
-        dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
+        dataset = dataset.cache()
+        # dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
         dataset = dataset.prefetch(buffer_size=1)
         self.train_dataset = dataset
 
@@ -235,15 +305,39 @@ class IcingIntensityNN:
 
         dataset = tf.data.Dataset.from_tensor_slices(indexes)
         dataset = dataset.batch(PROC_BATCH_SIZE)
-        dataset = dataset.map(self.data_function, num_parallel_calls=8)
+        dataset = dataset.map(self.data_function_test, num_parallel_calls=8)
+        dataset = dataset.cache()
         self.test_dataset = dataset
 
-    def setup_pipeline(self, filename, train_idxs=None, test_idxs=None):
-        self.filename = filename
-        self.h5f = h5py.File(filename, 'r')
-        time = self.h5f['time']
-        num_obs = time.shape[0]
-        trn_idxs, tst_idxs = split_data(num_obs, skip=4)
+    def get_evaluate_dataset(self, indexes):
+        indexes = list(indexes)
+
+        dataset = tf.data.Dataset.from_tensor_slices(indexes)
+        dataset = dataset.batch(PROC_BATCH_SIZE)
+        dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8)
+        dataset = dataset.cache()
+        self.eval_dataset = dataset
+
+    def setup_pipeline(self, filename_trn, filename_tst, trn_idxs=None, tst_idxs=None, seed=None):
+        self.filename_trn = filename_trn
+        self.h5f_trn = h5py.File(filename_trn, 'r')
+
+        self.filename_tst = filename_tst
+        self.h5f_tst = h5py.File(filename_tst, 'r')
+
+        if trn_idxs is None:
+            time = self.h5f_trn['time']
+            trn_idxs = np.arange(time.shape[0])
+            if seed is not None:
+                np.random.seed(seed)
+            np.random.shuffle(trn_idxs)
+
+            time = self.h5f_tst['time']
+            tst_idxs = np.arange(time.shape[0])
+            if seed is not None:
+                np.random.seed(seed)
+            np.random.shuffle(tst_idxs)
+
         self.num_data_samples = trn_idxs.shape[0]
 
         self.get_train_dataset(trn_idxs)
@@ -254,6 +348,30 @@ class IcingIntensityNN:
         print('num test samples: ', tst_idxs.shape[0])
         print('setup_pipeline: Done')
 
+    def setup_test_pipeline(self, filename, seed=None, shuffle=False):
+        self.filename_tst = filename
+        self.h5f_tst = h5py.File(filename, 'r')
+
+        time = self.h5f_tst['time']
+        tst_idxs = np.arange(time.shape[0])
+        self.num_data_samples = len(tst_idxs)
+        if seed is not None:
+            np.random.seed(seed)
+        if shuffle:
+            np.random.shuffle(tst_idxs)
+
+        self.get_test_dataset(tst_idxs)
+
+        print('num test samples: ', tst_idxs.shape[0])
+        print('setup_test_pipeline: Done')
+
+    def setup_eval_pipeline(self, data_dct, num_tiles):
+        self.data_dct = data_dct
+        idxs = np.arange(num_tiles)
+        self.num_data_samples = idxs.shape[0]
+
+        self.get_evaluate_dataset(idxs)
+
     def build_1d_cnn(self):
         print('build_1d_cnn')
         # padding = 'VALID'
@@ -319,63 +437,66 @@ class IcingIntensityNN:
 
         fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_6', doBatchNorm=True)
 
-        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_7', doBatchNorm=True)
-
-        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_8', doBatchNorm=True)
+        # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_7', doBatchNorm=True)
+        #
+        # fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_8', doBatchNorm=True)
 
         fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc)
         fc = tf.keras.layers.BatchNormalization()(fc)
         print(fc.shape)
 
-        # activation = tf.nn.softmax
-        activation = tf.nn.sigmoid  # For binary
+        if NumClasses == 2:
+            activation = tf.nn.sigmoid  # For binary
+        else:
+            activation = tf.nn.softmax  # For multi-class
 
-        logits = tf.keras.layers.Dense(NumLabels, activation=activation)(fc)
+        # Called logits, but these are actually probabilities, see activation
+        logits = tf.keras.layers.Dense(NumLogits, activation=activation)(fc)
         print(logits.shape)
         
         self.logits = logits
 
     def build_training(self):
-        self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False)  # for two-class only
-        #self.loss = tf.keras.losses.SparseCategoricalCrossentropy()  # For multi-class
+        if NumClasses == 2:
+            self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False)  # for two-class only
+        else:
+            self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)  # For multi-class
 
         # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
         initial_learning_rate = 0.002
         decay_rate = 0.95
         steps_per_epoch = int(self.num_data_samples/BATCH_SIZE)  # one epoch
         # decay_steps = int(steps_per_epoch / 2)
-        decay_steps = 4 * steps_per_epoch
+        decay_steps = 8 * steps_per_epoch
         print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)
 
         self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)
 
         optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)
 
-        if TRACK_MOVING_AVERAGE:
-            ema = tf.train.ExponentialMovingAverage(decay=0.999)
-
-            with tf.control_dependencies([optimizer]):
-                optimizer = ema.apply(self.model.trainable_variables)
+        if TRACK_MOVING_AVERAGE:  # Not really sure this works properly
+            optimizer = tfa.optimizers.MovingAverage(optimizer)
 
         self.optimizer = optimizer
         self.initial_learning_rate = initial_learning_rate
 
     def build_evaluation(self):
-        self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
-        self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
-        self.test_auc = tf.keras.metrics.AUC(name='test_auc')
-        self.test_recall = tf.keras.metrics.Recall(name='test_recall')
-        self.test_precision = tf.keras.metrics.Precision(name='test_precision')
         self.train_loss = tf.keras.metrics.Mean(name='train_loss')
         self.test_loss = tf.keras.metrics.Mean(name='test_loss')
 
-    def build_predict(self):
-        _, pred = tf.nn.top_k(self.logits)
-        self.pred_class = pred
-
-        if TRACK_MOVING_AVERAGE:
-            self.variable_averages = tf.train.ExponentialMovingAverage(0.999, self.global_step)
-            self.variable_averages.apply(self.model.trainable_variables)
+        if NumClasses == 2:
+            self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
+            self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
+            self.test_auc = tf.keras.metrics.AUC(name='test_auc')
+            self.test_recall = tf.keras.metrics.Recall(name='test_recall')
+            self.test_precision = tf.keras.metrics.Precision(name='test_precision')
+            self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg')
+            self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos')
+            self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg')
+            self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos')
+        else:
+            self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
+            self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
 
     @tf.function
     def train_step(self, mini_batch):
@@ -405,9 +526,14 @@ class IcingIntensityNN:
 
         self.test_loss(t_loss)
         self.test_accuracy(labels, pred)
-        self.test_auc(labels, pred)
-        self.test_recall(labels, pred)
-        self.test_precision(labels, pred)
+        if NumClasses == 2:
+            self.test_auc(labels, pred)
+            self.test_recall(labels, pred)
+            self.test_precision(labels, pred)
+            self.test_true_neg(labels, pred)
+            self.test_true_pos(labels, pred)
+            self.test_false_neg(labels, pred)
+            self.test_false_pos(labels, pred)
 
     def predict(self, mini_batch):
         inputs = [mini_batch[0]]
@@ -415,6 +541,45 @@ class IcingIntensityNN:
         pred = self.model(inputs, training=False)
         t_loss = self.loss(labels, pred)
 
+        self.test_labels.append(labels)
+        self.test_preds.append(pred.numpy())
+
+        self.test_loss(t_loss)
+        self.test_accuracy(labels, pred)
+        if NumClasses == 2:
+            self.test_auc(labels, pred)
+            self.test_recall(labels, pred)
+            self.test_precision(labels, pred)
+            self.test_true_neg(labels, pred)
+            self.test_true_pos(labels, pred)
+            self.test_false_neg(labels, pred)
+            self.test_false_pos(labels, pred)
+
+    def reset_test_metrics(self):
+        self.test_loss.reset_states()
+        self.test_accuracy.reset_states()
+        if NumClasses == 2:
+            self.test_auc.reset_states()
+            self.test_recall.reset_states()
+            self.test_precision.reset_states()
+            self.test_true_neg.reset_states()
+            self.test_true_pos.reset_states()
+            self.test_false_neg.reset_states()
+            self.test_false_pos.reset_states()
+
+    def get_metrics(self):
+        recall = self.test_recall.result()
+        precsn = self.test_precision.result()
+        f1 = 2 * (precsn * recall) / (precsn + recall)
+
+        tn = self.test_true_neg.result()
+        tp = self.test_true_pos.result()
+        fn = self.test_false_neg.result()
+        fp = self.test_false_pos.result()
+
+        mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
+        return f1, mcc
+
     def do_training(self, ckpt_dir=None):
 
         if ckpt_dir is None:
@@ -431,6 +596,16 @@ class IcingIntensityNN:
 
         step = 0
         total_time = 0
+        best_test_loss = np.finfo(dtype=np.float).max
+        best_test_acc = 0
+        best_test_recall = 0
+        best_test_precision = 0
+        best_test_auc = 0
+        best_test_f1 = 0
+        best_test_mcc = 0
+
+        if EARLY_STOP:
+            es = EarlyStop()
 
         for epoch in range(NUM_EPOCHS):
             self.train_loss.reset_states()
@@ -455,20 +630,27 @@ class IcingIntensityNN:
                             tf.summary.scalar('num_train_steps', step, step=step)
                             tf.summary.scalar('num_epochs', epoch, step=step)
 
-                        self.test_loss.reset_states()
-                        self.test_accuracy.reset_states()
-
+                        self.reset_test_metrics()
                         for data0_tst, label_tst in self.test_dataset:
                             tst_ds = tf.data.Dataset.from_tensor_slices((data0_tst, label_tst))
                             tst_ds = tst_ds.batch(BATCH_SIZE)
                             for mini_batch_test in tst_ds:
                                 self.test_step(mini_batch_test)
 
+                        if NumClasses == 2:
+                            f1, mcc = self.get_metrics()
+
                         with self.writer_valid.as_default():
                             tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
                             tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
-                            tf.summary.scalar('num_train_steps', step, step=step)
-                            tf.summary.scalar('num_epochs', epoch, step=step)
+                            if NumClasses == 2:
+                                tf.summary.scalar('auc_val', self.test_auc.result(), step=step)
+                                tf.summary.scalar('recall_val', self.test_recall.result(), step=step)
+                                tf.summary.scalar('prec_val', self.test_precision.result(), step=step)
+                                tf.summary.scalar('f1_val', f1, step=step)
+                                tf.summary.scalar('mcc_val', mcc, step=step)
+                                tf.summary.scalar('num_train_steps', step, step=step)
+                                tf.summary.scalar('num_epochs', epoch, step=step)
 
                         print('****** test loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
 
@@ -483,33 +665,56 @@ class IcingIntensityNN:
             print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
             total_time += (t1-t0)
 
-            self.test_loss.reset_states()
-            self.test_accuracy.reset_states()
+            self.reset_test_metrics()
             for data0, label in self.test_dataset:
                 ds = tf.data.Dataset.from_tensor_slices((data0, label))
                 ds = ds.batch(BATCH_SIZE)
                 for mini_batch in ds:
                     self.test_step(mini_batch)
 
-            print('loss, acc : ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
-            print('---------------------------------------------------------')
-            ckpt_manager.save()
+            if NumClasses == 2:
+                f1, mcc = self.get_metrics()
+                print('loss, acc, recall, precision, auc, f1, mcc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
+                      self.test_recall.result().numpy(), self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy())
+            else:
+                print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
+            print('------------------------------------------------------')
+
+            if TRACK_MOVING_AVERAGE:  # This may not really work properly
+                self.optimizer.assign_average_vars(self.model.trainable_variables)
+
+            tst_loss = self.test_loss.result().numpy()
+            if tst_loss < best_test_loss:
+                best_test_loss = tst_loss
+                best_test_acc = self.test_accuracy.result().numpy()
+                best_test_recall = self.test_recall.result().numpy()
+                best_test_precision = self.test_precision.result().numpy()
+                best_test_auc = self.test_auc.result().numpy()
+                best_test_f1 = f1.numpy()
+                best_test_mcc = mcc.numpy()
+
+                ckpt_manager.save()
 
             if self.DISK_CACHE and epoch == 0:
                 f = open(cachepath, 'wb')
                 pickle.dump(self.in_mem_data_cache, f)
                 f.close()
 
+            if EARLY_STOP and es.check_stop(tst_loss):
+                break
+
         print('total time: ', total_time)
         self.writer_train.close()
         self.writer_valid.close()
 
+        self.h5f_trn.close()
+        self.h5f_tst.close()
+
+        f = open('/home/rink/best_stats_'+now+'.pkl', 'wb')
+        pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f)
+        f.close()
+
     def build_model(self):
-        # flat = self.build_cnn()
-        # flat_1d = self.build_1d_cnn()
-        # flat = tf.keras.layers.concatenate([flat, flat_1d, flat_anc])
-        # flat = tf.keras.layers.concatenate([flat, flat_1d])
-        # self.build_dnn(flat)
         self.build_dnn()
         self.model = tf.keras.Model(self.inputs, self.logits)
 
@@ -523,27 +728,140 @@ class IcingIntensityNN:
         self.test_loss.reset_states()
         self.test_accuracy.reset_states()
 
-        for abi_tst, temp_tst, lbfp_tst in self.test_dataset:
-            ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst))
+        for data0, label in self.test_dataset:
+            ds = tf.data.Dataset.from_tensor_slices((data0, label))
             ds = ds.batch(BATCH_SIZE)
             for mini_batch_test in ds:
                 self.predict(mini_batch_test)
         print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result())
 
-    def run(self, filename, filename_l1b=None, train_dict=None, valid_dict=None):
+        labels = np.concatenate(self.test_labels)
+        self.test_labels = labels
+
+        preds = np.concatenate(self.test_preds)
+        self.test_probs = preds
+
+        if NumClasses == 2:
+            preds = np.where(preds > 0.5, 1, 0)
+        else:
+            preds = np.argmax(preds, axis=1)
+
+        self.test_preds = preds
+
+    def do_evaluate(self, ckpt_dir, prob_thresh=0.5):
+
+        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
+        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
+
+        ckpt.restore(ckpt_manager.latest_checkpoint)
+
+        pred_s = []
+        for data in self.eval_dataset:
+            ds = tf.data.Dataset.from_tensor_slices(data)
+            ds = ds.batch(BATCH_SIZE)
+            for mini_batch in ds:
+                pred = self.model([mini_batch], training=False)
+                pred_s.append(pred)
+
+        preds = np.concatenate(pred_s)
+        preds = preds[:,0]
+        self.test_probs = preds
+
+        if NumClasses == 2:
+            preds = np.where(preds > prob_thresh, 1, 0)
+        else:
+            preds = np.argmax(preds, axis=1)
+        self.test_preds = preds
+
+    def run(self, filename_trn, filename_tst):
         with tf.device('/device:GPU:'+str(self.gpu_device)):
-            self.setup_pipeline(filename, train_idxs=train_dict, test_idxs=valid_dict)
+            self.setup_pipeline(filename_trn, filename_tst)
             self.build_model()
             self.build_training()
             self.build_evaluation()
             self.do_training()
 
-    def run_restore(self, matchup_dict, ckpt_dir):
-        self.setup_pipeline(None, None, matchup_dict)
+    def run_restore(self, filename_tst, ckpt_dir):
+        self.setup_test_pipeline(filename_tst)
         self.build_model()
         self.build_training()
         self.build_evaluation()
         self.restore(ckpt_dir)
+        self.h5f_tst.close()
+
+    def run_evaluate(self, filename, ckpt_dir):
+        data_dct, ll, cc = make_for_full_domain_predict(filename, name_list=train_params)
+        self.setup_eval_pipeline(data_dct, len(ll))
+        self.build_model()
+        self.build_training()
+        self.build_evaluation()
+        self.do_evaluate(ckpt_dir)
+
+
+def run_restore_static(filename_tst, ckpt_dir_s_path):
+    ckpt_dir_s = os.listdir(ckpt_dir_s_path)
+    cm_s = []
+    for ckpt in ckpt_dir_s:
+        ckpt_dir = ckpt_dir_s_path + ckpt
+        if not os.path.isdir(ckpt_dir):
+            continue
+        nn = IcingIntensityNN()
+        nn.run_restore(filename_tst, ckpt_dir)
+        cm_s.append(tf.math.confusion_matrix(nn.test_labels.flatten(), nn.test_preds.flatten()))
+    num = len(cm_s)
+    cm_avg = cm_s[0]
+    for k in range(num-1):
+        cm_avg += cm_s[k+1]
+    cm_avg /= num
+
+    return cm_avg
+
+
+def run_evaluate_static(filename, ckpt_dir_s_path, prob_thresh=0.5):
+    data_dct, ll, cc = make_for_full_domain_predict(filename, name_list=train_params)
+    ckpt_dir_s = os.listdir(ckpt_dir_s_path)
+    prob_s = []
+    for ckpt in ckpt_dir_s:
+        ckpt_dir = ckpt_dir_s_path + ckpt
+        if not os.path.isdir(ckpt_dir):
+            continue
+        nn = IcingIntensityNN()
+        nn.setup_eval_pipeline(data_dct, len(ll))
+        nn.build_model()
+        nn.build_training()
+        nn.build_evaluation()
+        nn.do_evaluate(ckpt_dir, ll, cc)
+        prob_s.append(nn.test_probs)
+    num = len(prob_s)
+    prob_avg = prob_s[0]
+    for k in range(num-1):
+        prob_avg += prob_s[k+1]
+    prob_avg /= num
+    probs = prob_avg
+
+    if NumClasses == 2:
+        preds = np.where(probs > prob_thresh, 1, 0)
+    else:
+        preds = np.argmax(probs, axis=1)
+
+    cc = np.array(cc)
+    ll = np.array(ll)
+    ice_mask = preds == 1
+    print(cc.shape, ll.shape, ice_mask.shape)
+    ice_cc = cc[ice_mask]
+    ice_ll = ll[ice_mask]
+
+    nav = GEOSNavigation(sub_lon=-75.0, CFAC=5.6E-05, COFF=-0.101332, LFAC=-5.6E-05, LOFF=0.128212, num_elems=2500,
+                         num_lines=1500)
+
+    ice_lons = []
+    ice_lats = []
+    for k in range(ice_cc.shape[0]):
+        lon, lat = nav.lc_to_earth(ice_cc[k], ice_ll[k])
+        ice_lons.append(lon)
+        ice_lats.append(lat)
+
+    return filename, ice_lons, ice_lats
 
 
 if __name__ == "__main__":