From 565038f525f541713f69a13263d49b47565a70a4 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Fri, 19 Aug 2022 09:08:16 -0500 Subject: [PATCH] minor --- modules/deeplearning/espcn.py | 73 ++--------------------------------- 1 file changed, 4 insertions(+), 69 deletions(-) diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py index 2e885426..29ef22b6 100644 --- a/modules/deeplearning/espcn.py +++ b/modules/deeplearning/espcn.py @@ -341,9 +341,9 @@ class ESPCN: print('build_cnn') padding = "SAME" - # activation = tf.nn.relu # activation = tf.nn.elu - activation = tf.nn.leaky_relu + # activation = tf.nn.leaky_relu + activation = tf.nn.relu # kernel_initializer = 'glorot_uniform' kernel_initializer = 'he_uniform' momentum = 0.99 @@ -392,10 +392,6 @@ class ESPCN: print(self.logits.shape) def build_training(self): - # if NumClasses == 2: - # self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only - # else: - # self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class self.loss = tf.keras.losses.MeanSquaredError() # Regression # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) @@ -425,20 +421,6 @@ class ESPCN: self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss') - # if NumClasses == 2: - # self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy') - # self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy') - # self.test_auc = tf.keras.metrics.AUC(name='test_auc') - # self.test_recall = tf.keras.metrics.Recall(name='test_recall') - # self.test_precision = tf.keras.metrics.Precision(name='test_precision') - # self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg') - # self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos') - # self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg') - # self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos') - # else: - # self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') - # self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') - @tf.function def train_step(self, mini_batch): inputs = [mini_batch[0]] @@ -469,14 +451,6 @@ class ESPCN: self.test_loss(t_loss) self.test_accuracy(labels, pred) - # if NumClasses == 2: - # self.test_auc(labels, pred) - # self.test_recall(labels, pred) - # self.test_precision(labels, pred) - # self.test_true_neg(labels, pred) - # self.test_true_pos(labels, pred) - # self.test_false_neg(labels, pred) - # self.test_false_pos(labels, pred) def predict(self, mini_batch): inputs = [mini_batch[0]] @@ -493,14 +467,6 @@ class ESPCN: def reset_test_metrics(self): self.test_loss.reset_states() self.test_accuracy.reset_states() - # if NumClasses == 2: - # self.test_auc.reset_states() - # self.test_recall.reset_states() - # self.test_precision.reset_states() - # self.test_true_neg.reset_states() - # self.test_true_pos.reset_states() - # self.test_false_neg.reset_states() - # self.test_false_pos.reset_states() def get_metrics(self): recall = self.test_recall.result() @@ -533,12 +499,6 @@ class ESPCN: step = 0 total_time = 0 best_test_loss = np.finfo(dtype=np.float).max - best_test_acc = 0 - best_test_recall = 0 - best_test_precision = 0 - best_test_auc = 0 - best_test_f1 = 0 - best_test_mcc = 0 if EARLY_STOP: es = EarlyStop() @@ -574,20 +534,9 @@ class ESPCN: for mini_batch_test in tst_ds: self.test_step(mini_batch_test) - # if NumClasses == 2: - # f1, mcc = self.get_metrics() - with self.writer_valid.as_default(): tf.summary.scalar('loss_val', self.test_loss.result(), step=step) tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) - # if NumClasses == 2: - # tf.summary.scalar('auc_val', self.test_auc.result(), step=step) - # tf.summary.scalar('recall_val', self.test_recall.result(), step=step) - # tf.summary.scalar('prec_val', self.test_precision.result(), step=step) - # tf.summary.scalar('f1_val', f1, step=step) - # tf.summary.scalar('mcc_val', mcc, step=step) - # tf.summary.scalar('num_train_steps', step, step=step) - # tf.summary.scalar('num_epochs', epoch, step=step) with self.writer_train_valid_loss.as_default(): tf.summary.scalar('loss_trn', loss.numpy(), step=step) @@ -615,25 +564,11 @@ class ESPCN: self.test_step(mini_batch) print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) - # if NumClasses == 2: - # f1, mcc = self.get_metrics() - # print('loss, acc, recall, precision, auc, f1, mcc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), - # self.test_recall.result().numpy(), self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy()) - # else: - # print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) print('------------------------------------------------------') tst_loss = self.test_loss.result().numpy() if tst_loss < best_test_loss: best_test_loss = tst_loss - # if NumClasses == 2: - # best_test_acc = self.test_accuracy.result().numpy() - # best_test_recall = self.test_recall.result().numpy() - # best_test_precision = self.test_precision.result().numpy() - # best_test_auc = self.test_auc.result().numpy() - # best_test_f1 = f1.numpy() - # best_test_mcc = mcc.numpy() - ckpt_manager.save() if EARLY_STOP and es.check_stop(tst_loss): @@ -741,9 +676,9 @@ class ESPCN: def prepare(param_idx=1, filename='/Users/tomrink/data_valid_40.npy'): nda = np.load(filename) - #nda = nda[:, param_idx, :, :] + # nda = nda[:, param_idx, :, :] nda_lr = nda[:, param_idx, 2:133:2, 2:133:2] - # nda_lr = resample(x_70, y_70, nda, x_70_2, y_70_2) + # nda_lr = resample(x_134, y_134, nda, x_134_2, y_134_2) nda_lr = np.expand_dims(nda_lr, axis=3) return nda_lr -- GitLab