From 565038f525f541713f69a13263d49b47565a70a4 Mon Sep 17 00:00:00 2001
From: tomrink <rink@ssec.wisc.edu>
Date: Fri, 19 Aug 2022 09:08:16 -0500
Subject: [PATCH] minor

---
 modules/deeplearning/espcn.py | 73 ++---------------------------------
 1 file changed, 4 insertions(+), 69 deletions(-)

diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py
index 2e885426..29ef22b6 100644
--- a/modules/deeplearning/espcn.py
+++ b/modules/deeplearning/espcn.py
@@ -341,9 +341,9 @@ class ESPCN:
         print('build_cnn')
         padding = "SAME"
 
-        # activation = tf.nn.relu
         # activation = tf.nn.elu
-        activation = tf.nn.leaky_relu
+        # activation = tf.nn.leaky_relu
+        activation = tf.nn.relu
         # kernel_initializer = 'glorot_uniform'
         kernel_initializer = 'he_uniform'
         momentum = 0.99
@@ -392,10 +392,6 @@ class ESPCN:
         print(self.logits.shape)
 
     def build_training(self):
-        # if NumClasses == 2:
-        #     self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False)  # for two-class only
-        # else:
-        #     self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)  # For multi-class
         self.loss = tf.keras.losses.MeanSquaredError()  # Regression
 
         # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
@@ -425,20 +421,6 @@ class ESPCN:
         self.train_loss = tf.keras.metrics.Mean(name='train_loss')
         self.test_loss = tf.keras.metrics.Mean(name='test_loss')
 
-        # if NumClasses == 2:
-        #     self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
-        #     self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
-        #     self.test_auc = tf.keras.metrics.AUC(name='test_auc')
-        #     self.test_recall = tf.keras.metrics.Recall(name='test_recall')
-        #     self.test_precision = tf.keras.metrics.Precision(name='test_precision')
-        #     self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg')
-        #     self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos')
-        #     self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg')
-        #     self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos')
-        # else:
-        #     self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
-        #     self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
-
     @tf.function
     def train_step(self, mini_batch):
         inputs = [mini_batch[0]]
@@ -469,14 +451,6 @@ class ESPCN:
 
         self.test_loss(t_loss)
         self.test_accuracy(labels, pred)
-        # if NumClasses == 2:
-        #     self.test_auc(labels, pred)
-        #     self.test_recall(labels, pred)
-        #     self.test_precision(labels, pred)
-        #     self.test_true_neg(labels, pred)
-        #     self.test_true_pos(labels, pred)
-        #     self.test_false_neg(labels, pred)
-        #     self.test_false_pos(labels, pred)
 
     def predict(self, mini_batch):
         inputs = [mini_batch[0]]
@@ -493,14 +467,6 @@ class ESPCN:
     def reset_test_metrics(self):
         self.test_loss.reset_states()
         self.test_accuracy.reset_states()
-        # if NumClasses == 2:
-        #     self.test_auc.reset_states()
-        #     self.test_recall.reset_states()
-        #     self.test_precision.reset_states()
-        #     self.test_true_neg.reset_states()
-        #     self.test_true_pos.reset_states()
-        #     self.test_false_neg.reset_states()
-        #     self.test_false_pos.reset_states()
 
     def get_metrics(self):
         recall = self.test_recall.result()
@@ -533,12 +499,6 @@ class ESPCN:
         step = 0
         total_time = 0
         best_test_loss = np.finfo(dtype=np.float).max
-        best_test_acc = 0
-        best_test_recall = 0
-        best_test_precision = 0
-        best_test_auc = 0
-        best_test_f1 = 0
-        best_test_mcc = 0
 
         if EARLY_STOP:
             es = EarlyStop()
@@ -574,20 +534,9 @@ class ESPCN:
                             for mini_batch_test in tst_ds:
                                 self.test_step(mini_batch_test)
 
-                        # if NumClasses == 2:
-                        #     f1, mcc = self.get_metrics()
-
                         with self.writer_valid.as_default():
                             tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
                             tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
-                            # if NumClasses == 2:
-                            #     tf.summary.scalar('auc_val', self.test_auc.result(), step=step)
-                            #     tf.summary.scalar('recall_val', self.test_recall.result(), step=step)
-                            #     tf.summary.scalar('prec_val', self.test_precision.result(), step=step)
-                            #     tf.summary.scalar('f1_val', f1, step=step)
-                            #     tf.summary.scalar('mcc_val', mcc, step=step)
-                            #     tf.summary.scalar('num_train_steps', step, step=step)
-                            #     tf.summary.scalar('num_epochs', epoch, step=step)
 
                         with self.writer_train_valid_loss.as_default():
                             tf.summary.scalar('loss_trn', loss.numpy(), step=step)
@@ -615,25 +564,11 @@ class ESPCN:
                     self.test_step(mini_batch)
 
             print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
-            # if NumClasses == 2:
-            #     f1, mcc = self.get_metrics()
-            #     print('loss, acc, recall, precision, auc, f1, mcc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
-            #           self.test_recall.result().numpy(), self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy())
-            # else:
-            #     print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
             print('------------------------------------------------------')
 
             tst_loss = self.test_loss.result().numpy()
             if tst_loss < best_test_loss:
                 best_test_loss = tst_loss
-                # if NumClasses == 2:
-                #     best_test_acc = self.test_accuracy.result().numpy()
-                #     best_test_recall = self.test_recall.result().numpy()
-                #     best_test_precision = self.test_precision.result().numpy()
-                #     best_test_auc = self.test_auc.result().numpy()
-                #     best_test_f1 = f1.numpy()
-                #     best_test_mcc = mcc.numpy()
-
                 ckpt_manager.save()
 
             if EARLY_STOP and es.check_stop(tst_loss):
@@ -741,9 +676,9 @@ class ESPCN:
 
 def prepare(param_idx=1, filename='/Users/tomrink/data_valid_40.npy'):
     nda = np.load(filename)
-    #nda = nda[:, param_idx, :, :]
+    # nda = nda[:, param_idx, :, :]
     nda_lr = nda[:, param_idx, 2:133:2, 2:133:2]
-    # nda_lr = resample(x_70, y_70, nda, x_70_2, y_70_2)
+    # nda_lr = resample(x_134, y_134, nda, x_134_2, y_134_2)
     nda_lr = np.expand_dims(nda_lr, axis=3)
     return nda_lr
 
-- 
GitLab