diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 0217c37719fa8211bc6c3e1b71e581c1e3bb6756..b7d5153109efbab582b92e6ebeb0946c5cb493fd 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -652,23 +652,7 @@ class SRCNN: return self.do_evaluate(data, ckpt_dir) -# def run_evaluate_static(in_file, out_file, ckpt_dir): -# nda = np.load(in_file) -# -# nda = nda[:, data_idx, 3:131:2, 3:131:2] -# nda = resample(y_64, x_64, nda, s, t) -# nda = np.expand_dims(nda, axis=3) -# -# nn = SRCNN() -# out_sr = nn.run_evaluate(nda, data_param, ckpt_dir) -# out_sr = denormalize(out_sr, param, mean_std_dct) -# if out_file is not None: -# np.save(out_file, out_sr) -# else: -# return out_sr - - -def run_evaluate_static_new(in_file, out_file, ckpt_dir): +def run_evaluate_static(in_file, out_file, ckpt_dir): h5f = h5py.File(in_file, 'r') grd_a = get_grid_values_all(h5f, data_params[0]) grd_b = get_grid_values_all(h5f, 'cloud_fraction') @@ -695,6 +679,23 @@ def run_evaluate_static_new(in_file, out_file, ckpt_dir): return out_sr +def analyze(): + h5f = h5py.File('/Users/tomrink/clavrx_snpp_viirs.A2019071.0000.001.2019071061610.uwssec_B00038187.level2.h5', 'r') + grd = get_grid_values_all(h5f, 'cloud_fraction') + grd = grd[::2, ::2] + print(grd.shape) + leny, lenx = grd.shape + x = np.arange(lenx) + y = np.arange(leny) + x_up = np.arange(0, lenx, 0.5) + y_up = np.arange(0, leny, 0.5) + + grd_a = resample_2d_linear_one(x, y, grd, x_up, y_up) + print(grd_a.shape) + + h5f.close() + + if __name__ == "__main__": nn = SRCNN() nn.run('matchup_filename')