diff --git a/modules/deeplearning/cloud_fraction_fcn_abi.py b/modules/deeplearning/cloud_fraction_fcn_abi.py index 3c1b28116f744e66d88ef4fc125b345262da412d..04ca65b95a8b41c7737a05fdddfd77999f29f90e 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi.py @@ -1374,14 +1374,30 @@ def analyze_5cat(file): # Fig, ax = plt.subplots() -# lbls = lbls.flatten() -# pred = pred.flatten() -# cld_prob = cld_prob.flatten() +# import numpy as np +# tup = np.load('/Users/tomrink/cld_frac_viirs.npy', allow_pickle=True) +# lbls = tup[0].flatten() +# pred = tup[1].flatten() +# bt = tup[2].flatten() +# refl = tup[3].flatten() +# refl_rng = tup[4].flatten() +# refl_std = tup[5].flatten() +# cld_prob = tup[6].flatten() # cat_0 = lbls == 0 # cat_1 = lbls == 1 # cat_2 = lbls == 2 # cat_3 = lbls == 3 # cat_4 = lbls == 4 +# cat_0_hit = (lbls == 0) & (pred == 0) +# cat_1_hit = (lbls == 1) & (pred == 1) +# cat_2_hit = (lbls == 2) & (pred == 2) +# cat_3_hit = (lbls == 3) & (pred == 3) +# cat_4_hit = (lbls == 4) & (pred == 4) +# cat_0_miss = (lbls == 0) & (pred != 0) +# cat_1_miss = (lbls == 1) & (pred != 1) +# cat_2_miss = (lbls == 2) & (pred != 2) +# cat_3_miss = (lbls == 3) & (pred != 3) +# cat_4_miss = (lbls == 4) & (pred != 4) # plt.hist(cld_prob[cat_0], log=True, histtype='step', linewidth=1.4, color='blue', label='CLR') # plt.hist(cld_prob[cat_1], log=True, histtype='step', linewidth=1.4, color='orange', label='1/4') # plt.hist(cld_prob[cat_2], log=True, histtype='step', linewidth=1.4, color='green', label='1/2')