diff --git a/modules/deeplearning/icing_fcn.py b/modules/deeplearning/icing_fcn.py index fefbeb751c6a482446fa5a0a9645ecb1712507b8..c92cc46bb6bed077a89f7b46aea3f1065acd2ac0 100644 --- a/modules/deeplearning/icing_fcn.py +++ b/modules/deeplearning/icing_fcn.py @@ -363,22 +363,44 @@ class IcingIntensityFCN: def get_in_mem_data_batch_test(self, idxs): return self.get_in_mem_data_batch(idxs, False) + # For full image processing, not quite there yet :( + # def get_in_mem_data_batch_eval(self, idxs): + # data = [] + # for param in self.train_params: + # nda = self.data_dct[param] + # nda = normalize(nda, param, mean_std_dct) + # data.append(nda) + # data = np.stack(data) + # data = data.astype(np.float32) + # data = np.transpose(data, axes=(1, 2, 0)) + # data = np.expand_dims(data, axis=0) + # + # nda = np.zeros([1]) + # nda[0] = self.flight_level + # nda = tf.one_hot(nda, 5).numpy() + # nda = np.expand_dims(nda, axis=0) + # nda = np.expand_dims(nda, axis=0) + # + # return data, nda + def get_in_mem_data_batch_eval(self, idxs): + # sort these to use as numpy indexing arrays + nd_idxs = np.array(idxs) + nd_idxs = np.sort(nd_idxs) + data = [] for param in self.train_params: - nda = self.data_dct[param] + nda = self.data_dct[param][nd_idxs, ] nda = normalize(nda, param, mean_std_dct) data.append(nda) data = np.stack(data) data = data.astype(np.float32) - data = np.transpose(data, axes=(1, 2, 0)) - data = np.expand_dims(data, axis=0) + data = np.transpose(data, axes=(1, 2, 3, 0)) - nda = np.zeros([1]) - nda[0] = self.flight_level + # TODO: altitude data will be specified by user at run-time + nda = np.zeros([nd_idxs.size]) + nda[:] = self.flight_level nda = tf.one_hot(nda, 5).numpy() - nda = np.expand_dims(nda, axis=0) - nda = np.expand_dims(nda, axis=0) return data, nda