diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index 9f1f822b22b36293343fa561aee5ef71c27f75c1..5dba2a55ae473cc612918050aa56abef3dfe9f29 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -208,7 +208,7 @@ class SRCNN: self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 - self.n_chans = 6 + self.n_chans = 3 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) @@ -267,16 +267,16 @@ class SRCNN: tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) - for param in sub_fields: - idx = params.index(param) - tmp = input_data[:, idx, :, :] - tmp = upsample_nearest(tmp) - tmp = tmp[:, self.slc_y, self.slc_x] - if param != 'refl_substddev_ch01': - tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) - else: - tmp = np.where(np.isnan(tmp), 0, tmp) - data_norm.append(tmp) + # for param in sub_fields: + # idx = params.index(param) + # tmp = input_data[:, idx, :, :] + # tmp = upsample_nearest(tmp) + # tmp = tmp[:, self.slc_y, self.slc_x] + # if param != 'refl_substddev_ch01': + # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + # else: + # tmp = np.where(np.isnan(tmp), 0, tmp) + # data_norm.append(tmp) # for param in data_params_full: # idx = params_i.index(param) @@ -287,6 +287,7 @@ class SRCNN: # data_norm.append(tmp[:, self.slc_y, self.slc_x]) # --------------------------------------------------- tmp = input_label[:, label_idx_i, ::2, ::2] + tmp = tmp.copy() tmp = np.where(np.isnan(tmp), 0, tmp) tmp = tmp[:, self.slc_y_2, self.slc_x_2] tmp = self.upsample(tmp) @@ -299,8 +300,9 @@ class SRCNN: # ----------------------------------------------------- # ----------------------------------------------------- label = input_label[:, label_idx_i, ::2, ::2] - label = normalize(label, label_param, mean_std_dct) - # label = scale(label, label_param, mean_std_dct) + label = label.copy() + # label = normalize(label, label_param, mean_std_dct) + label = scale(label, label_param, mean_std_dct) label = label[:, self.y_128, self.x_128] label = np.where(np.isnan(label), 0, label) @@ -415,7 +417,7 @@ class SRCNN: conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale) - #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) @@ -628,10 +630,10 @@ class SRCNN: preds = np.concatenate(self.test_preds) print(labels.shape, preds.shape) - labels_denorm = denormalize(labels, label_param, mean_std_dct) - preds_denorm = denormalize(preds, label_param, mean_std_dct) - # labels_denorm = descale(labels, label_param, mean_std_dct) - # preds_denorm = descale(preds, label_param, mean_std_dct) + # labels_denorm = denormalize(labels, label_param, mean_std_dct) + # preds_denorm = denormalize(preds, label_param, mean_std_dct) + labels_denorm = descale(labels, label_param, mean_std_dct) + preds_denorm = descale(preds, label_param, mean_std_dct) return labels_denorm, preds_denorm @@ -761,8 +763,8 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): print('INPUT: ', data.shape) cld_opd_sres = nn.run_evaluate(data, ckpt_dir) - # cld_opd_sres = descale(cld_opd_sres, label_param, mean_std_dct) - cld_opd_sres = denormalize(cld_opd_sres, label_param, mean_std_dct) + cld_opd_sres = descale(cld_opd_sres, label_param, mean_std_dct) + # cld_opd_sres = denormalize(cld_opd_sres, label_param, mean_std_dct) _, ylen, xlen, _ = cld_opd_sres.shape print('OUT: ', ylen, xlen)