From 4dc27d7b45a3f2f47ab3f5e59796d7289d161576 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Fri, 9 Dec 2022 13:46:16 -0600 Subject: [PATCH] snapshot.. --- modules/deeplearning/srcnn_l1b_l2.py | 60 ++++++++++++++-------------- 1 file changed, 30 insertions(+), 30 deletions(-) diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 3da783c7..80fcbe4a 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -62,30 +62,30 @@ label_idx = params.index(label_param) print('data_params: ', data_params) print('label_param: ', label_param) -# Kernel size: 3, target size: (128, 128) -slc_x = slice(2, 132) -slc_y = slice(2, 132) -slc_x_2 = slice(1, 134, 2) -slc_y_2 = slice(1, 134, 2) -x_128 = slice(3, 131) -y_128 = slice(3, 131) -t = np.arange(1, 66, 0.5) -s = np.arange(1, 66, 0.5) -x_2 = np.arange(67) -y_2 = np.arange(67) -# ---------------------------------------- - -# Kernel size: 5, target_size: (128, 128) -# slc_x = slice(3, 135) -# slc_y = slice(3, 135) -# slc_x_2 = slice(2, 137, 2) -# slc_y_2 = slice(2, 137, 2) -# x_128 = slice(5, 133) -# y_128 = slice(5, 133) -# t = np.arange(1, 67, 0.5) -# s = np.arange(1, 67, 0.5) -# x_2 = np.arange(68) -# y_2 = np.arange(68) +KERNEL_SIZE = 3 # target size: (128, 128) + +if KERNEL_SIZE == 3: + slc_x = slice(2, 132) + slc_y = slice(2, 132) + slc_x_2 = slice(1, 134, 2) + slc_y_2 = slice(1, 134, 2) + x_128 = slice(3, 131) + y_128 = slice(3, 131) + t = np.arange(1, 66, 0.5) + s = np.arange(1, 66, 0.5) + x_2 = np.arange(67) + y_2 = np.arange(67) +elif KERNEL_SIZE == 5: + slc_x = slice(3, 135) + slc_y = slice(3, 135) + slc_x_2 = slice(2, 137, 2) + slc_y_2 = slice(2, 137, 2) + x_128 = slice(5, 133) + y_128 = slice(5, 133) + t = np.arange(1, 67, 0.5) + s = np.arange(1, 67, 0.5) + x_2 = np.arange(68) + y_2 = np.arange(68) # ---------------------------------------- @@ -412,7 +412,7 @@ class SRCNN: input_2d = self.inputs[0] print('input: ', input_2d.shape) - conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d) + conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d) print(conv.shape) # if NOISE_TRAINING: @@ -420,15 +420,15 @@ class SRCNN: scale = 0.2 - conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=3, scale=scale) + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=KERNEL_SIZE, scale=scale) - conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=3, scale=scale) + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale) - conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=3, scale=scale) + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) - #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=3, scale=scale) + #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) - #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=3, scale=scale) + #conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale) conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b) -- GitLab