diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index fd10b5321ca2199d75c6eec9043b4c688f1604d7..6895b8b98671c99426190628fec3d01f967824ba 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -755,6 +755,8 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): hr_grd_a = grd_a.copy() hr_grd_a = hr_grd_a[y_128, x_128] grd_a = grd_a[slc_y_2, slc_x_2] + grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s) + grd_a = grd_a[:, y_k, x_k] grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) # # grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') @@ -769,10 +771,10 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): hr_grd_c = grd_c.copy() hr_grd_c = hr_grd_c[y_128, x_128] grd_c = grd_c[slc_y_2, slc_x_2] - if label_param != 'cloud_probability': - grd_c = normalize(grd_c, label_param, mean_std_dct) grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s) grd_c = grd_c[y_k, x_k] + if label_param != 'cloud_probability': + grd_c = normalize(grd_c, label_param, mean_std_dct) # data = np.stack([grd_a, grd_b, grd_c], axis=2) data = np.stack([grd_a, grd_c], axis=2)