From 4bfbe59adb880c16a1133fdad628a276992ee530 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Sat, 5 Nov 2022 13:12:41 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/cnn_cld_frac.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/modules/deeplearning/cnn_cld_frac.py b/modules/deeplearning/cnn_cld_frac.py index b8f84f39..1a5c8b98 100644 --- a/modules/deeplearning/cnn_cld_frac.py +++ b/modules/deeplearning/cnn_cld_frac.py @@ -280,12 +280,8 @@ class CNN: tmp = resample_2d_linear(x_64, y_64, tmp, t, s) data_norm.append(tmp) # -------- - tmp = input_data[:, label_idx, y_128_2, x_128_2] - if label_param != 'cloud_fraction': - tmp = normalize(tmp, label_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) - else: - tmp = np.where(np.isnan(tmp), 0, tmp) - tmp = resample_2d_linear(x_64, y_64, tmp, t, s) + tmp = input_data[:, label_idx, y_128, x_128] + tmp = np.where(np.isnan(tmp), 0, tmp) # shouldn't need this data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3) @@ -464,6 +460,10 @@ class CNN: conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_3') + conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_4') + + conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_5') + # conv = conv + conv_b print(conv.shape) -- GitLab