diff --git a/modules/deeplearning/cnn_cld_frac.py b/modules/deeplearning/cnn_cld_frac.py index b8f84f392ad43d44db46f476f492955e6de459fe..1a5c8b98d0aae3681b012a5855d5af733a601828 100644 --- a/modules/deeplearning/cnn_cld_frac.py +++ b/modules/deeplearning/cnn_cld_frac.py @@ -280,12 +280,8 @@ class CNN: tmp = resample_2d_linear(x_64, y_64, tmp, t, s) data_norm.append(tmp) # -------- - tmp = input_data[:, label_idx, y_128_2, x_128_2] - if label_param != 'cloud_fraction': - tmp = normalize(tmp, label_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) - else: - tmp = np.where(np.isnan(tmp), 0, tmp) - tmp = resample_2d_linear(x_64, y_64, tmp, t, s) + tmp = input_data[:, label_idx, y_128, x_128] + tmp = np.where(np.isnan(tmp), 0, tmp) # shouldn't need this data_norm.append(tmp) # --------- data = np.stack(data_norm, axis=3) @@ -464,6 +460,10 @@ class CNN: conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_3') + conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_4') + + conv = build_residual_block_1x1(conv, num_filters, activation, 'Residual_Block_5') + # conv = conv + conv_b print(conv.shape)