diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index 0f0fb501fe9e8b8202f5630498566ed9e7188bb2..07c57b0ff2e1bfe45bdc7cf865ecda37d0efcb2f 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -52,10 +52,11 @@ IMG_DEPTH = 1 label_param = 'cld_opd_dcomp' -params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param] +params = ['temp_11_0um_nom', 'refl_0_65um_nom', 'refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01', label_param] params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param] data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] data_params_full = ['refl_0_65um_nom'] +sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] label_idx_i = params_i.index(label_param) label_idx = params.index(label_param) @@ -199,7 +200,7 @@ class SRCNN: self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 - self.n_chans = 3 + self.n_chans = 6 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) @@ -258,6 +259,17 @@ class SRCNN: tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) + for param in sub_fields: + idx = params.index(param) + tmp = input_data[:, idx, :, :] + tmp = tmp[:, self.slc_y_m, self.slc_x_m] + tmp = self.upsample_nearest(tmp) + if param != 'refl_substddev_ch01': + tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + else: + tmp = np.where(np.isnan(tmp), 0, tmp) + data_norm.append(tmp) + # for param in data_params_full: # idx = params_i.index(param) # tmp = input_label[:, idx, :, :]