diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 9932cfbfdef873eb82ba457cfc11b5857b71a795..8dcebe7349a6f90c96de1e604fcd2fb0c08a2f27 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -202,8 +202,7 @@ class SRCNN: f = files[k] nda = np.load(f) data_s.append(nda) - - data = np.concatenate(data_s) + input_data = np.concatenate(data_s) add_noise = None noise_scale = None @@ -214,15 +213,15 @@ class SRCNN: data_norm = [] for param in data_params: idx = params.index(param) - tmp = data[:, idx, 3:131:2, 3:131:2] + tmp = input_data[:, idx, 3:131:2, 3:131:2] tmp = resample(y_64, x_64, tmp, s, t) tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale) data_norm.append(tmp) data = np.stack(data_norm, axis=3) data = data.astype(np.float32) - # label = data[:, label_idx, 3:131:2, 3:131:2] - label = data[:, label_idx, 3:131, 3:131] + # label = input_data[:, label_idx, 3:131:2, 3:131:2] + label = input_data[:, label_idx, 3:131, 3:131] label = np.expand_dims(label, axis=3) if label_param != 'cloud_fraction': label = normalize(label, label_param, mean_std_dct)